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Abstract

The dynamic of the temporal correlations between brain areas, called functional con-
nectivity (FC), undergoes complex transformations through the life span. In this re-
view, we aim to provide an overview of these changes in the nonpathological brain
from fetal life to advanced age. After a brief description of the main methods, we pro-
pose that FC development can be divided into four main phases: first, before birth, a
strong change in FC leads to the emergence of functional proto-networks, involving
mainly within network short-range connections. Then, during the first years of life,
there is a strong widespread organization of networks which starts with segregation
processes followed by a continuous increase in integration. Thereafter, from ado-
lescence to early adulthood, a refinement of existing networks in the brain occurs,
characterized by an increase in integrative processes until about 40 years. Middle
age constitutes a pivotal period associated with an inversion of the functional brain
trajectories with a decrease in segregation process in conjunction to a large-scale re-
organization of between network connections. Studies suggest that these processes
are in line with the development of cognitive and sensory functions throughout life
as well as their deterioration. During aging, results support the notion of dedifferen-
tiation processes, which refer to the decrease in functional selectivity of the brain
regions, resulting in more diffuse and less specialized FC, associated with the disrup-
tion of cognitive functions with age. The inversion of developmental processes dur-
ing aging is in accordance with the developmental models of neuroanatomy for which

the latest matured regions are the first to deteriorate.
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1 | INTRODUCTION

Magnetic resonance imaging (MRI) has been used to understand the
changes in brain organization at all stages of life while functional
magnetic resonance imaging (FMRI) has one of the most widely used
method for describing human brain function (Bandettini, 2012;
Howseman & Bowtell, 1999). To date, an important question
emerging from the literature is how functional connectivity (FC)
changes with age. Age-dependent brain reorganization has been
shown through whole-brain FC analyses (Bagarinao et al., 2019;
Grayson & Fair, 2017; Sala-Llonch, Bartrés-Faz, & Junqué, 2015; Zuo
et al., 2017). Until recently, however, information about fetal func-
tional brain development in vivo was impossible to obtain. More re-
cent MRI advances, however, have made it possible to examine FC in
the human brain before birth. Results from resting-state FC studies
have improved our understanding of functional brain development
from the fetal period to advanced age in the past years. Yet, a key
issue within the FC literature is how to reconcile conflicting reports,
that is, some showing a decrease and others an increase in brain con-
nectivity with age. Moreover, current studies on brain development
in younger and older age are usually conducted independently of
each other. Although life span studies have also been conducted, the
youngest subjects are 6 years old, mainly because of methodological
challenges (Cusack, McCuaig, & Linke, 2017). In addition, while stud-
ies were initially conducted from childhood to adolescence (ages
6-17), those on infants and early childhood (from birth to 6 age) did
not begin until recently (Fransson et al., 2007; Keunen, Counsell, &
Benders, 2017). As a result, it is difficult to integrate different obser-
vations for understanding changes in brain reorganization through-
out life.

In addition, to determine FC measures, the spatial/temporal pro-
cessing steps differ considerably across studies and constitute an
additional factor which contributes to the origin of the heteroge-
neity of findings (Noble, Scheinost, & Constable, 2019). Because it
has been showed that global blood oxygen level dependent (BOLD)
signal changes are confounded by head motion, respiration, and car-
diac rhythm artifacts (Birn, Diamond, Smith, & Bandettini, 2006; Liu,
Nalci, & Falahpour, 2017; Power, Plitt, Laumann, & Martin, 2017),
these confounding factors were typically removed with global sig-
nal regression. However, there is accumulating evidence that global
signal regression disproportionately alters short- and long-range
correlations, which may contribute to spurious FC differences (Saad
et al., 2012), and introduces negative correlations. Consequently,
studies that performed only global signal regression or did not add
test-retest analyses for global signal regression were excluded in
this review. Another factor affecting quantitative measures of FC
consists in the choice of atlas or parcellation (Arslan et al., 2018)
which results in variable numbers of studied brain regions depend-
ing on resolution parcellation. For this reason, all corresponding ana-
tomical details are provided in the present report tables. The aim of
this review is to provide an overview of FC changes at rest over the
human life span, from the emergence of neural activity during the

first years of life to FC changes in older adults. This review is not to

Significance

The human brain undergoes complex transformations
across the life span. However, functional connectivity
studies present conflicting reports. In this review, we pro-
vide a coherent overview of brain reorganization through-
out development. The early emergence of basic network
organization follows a primary-to-higher order network
sequence which strengthens during adolescence and
reaches a stable level in adulthood (40 years). Middle-age
adulthood (>40 years) constitutes a turning point with a
complex reorganization leading to a disruption of the bal-
ance between segregation and integration processes. This
reorganization involves a shift from high-order to primary
sensory networks, as an inverse sequence to the early de-

velopment process.

be exhaustive but rather will focus on FC changes underlying non-
pathological development, specifically including fetal development.
After a description of functional MRI methods used in the reported
studies, we will differentiate studies investigating FC through (a)
fetal period, (b) to childhood period, (c) adolescence to the beginning
of adulthood, and (d) from middle-adulthood to older age. For each
subpart, the functional brain measures from study design (cross-sec-
tional and longitudinal) and strategy of signal analysis will be speci-

fied and grouped if possible.

2 | METHODS OVERVIEW TO
ANALYZE RESTING-STATE FUNCTIONAL
CONNECTIVITY

The fMRI is based on the changes in blood oxygen level depend-
ent (BOLD, see Glossary) signal across time, which reflect an indi-
rect response induced by neuronal activity (Kim & Ogawa, 2012).
Resting-state fMRI (rs-fMRI, see Glossary) refers to the spontaneous
functional brain activity where participants are asked to lie down
and not to fall asleep or to think in anything particular. Resting-state
fMRI is based on the temporal coherence between spontaneous
fluctuations measured as low-frequency oscillations of the BOLD
signal (Biswal, Yetkin, Haughton, & Hyde, 1995) and permits to ob-
serve intrinsic functional organization of the brain. These sponta-
neous fluctuations in the BOLD signal can be correlated between
several brain regions, which form typical networks called resting-
state networks (i.e., participants have to relax and let their mind
wander, see Glossary), such as default mode, executive, or visual
networks (Damoiseaux & Greicius, 2009).

The analysis of rs-fMRI connectivity is subject to a high vari-
ety of methodological approaches which still growths with ongo-
ing progresses (Horien, Greene, Constable, & Scheinost, 2020; Lv

etal., 2018; Smitha et al., 2017). Some methods consist of correlating
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the temporal course of the BOLD signal of one or more brain re-
gion(s), seed(s), or region(s) of interest, with the rest of the brain
(Biswal et al., 1995; Shehzad et al., 2009), where the correlation
coefficient (generally Pearson coefficient or Fisher's Z-transformed
coefficient, see Glossary) reflects the FC between these regions.
Independent component analysis (ICA, see Glossary) is another
one of the most widely used methods. It aims to identify, among
the BOLD data, the different sources in order to gather them into
spatially independent components. The voxels constituting the
same component exhibit close temporal decays of the BOLD signal
(Hyvérinen, 2013; Tharwat, 2018). Using this analysis technique, it
was observed that the identified components from the mixture of
rs-fMRI data correspond to resting-state networks, and that these
components are stable and robust across studies (Damoiseaux
et al., 2006; Zuo & Xing, 2014). Moreover, ICA is useful to identify
signals of no-interest, such as artifacts, head motion, physiologi-
cal noise, or CSF-related signals, and remove them from the fMRI
data based on their shared time course (Behzadi, Restom, Liau, &
Liu, 2007; Griffanti et al., 2014). Other indices can also be measured
in fMRI such as the amplitude of the low-frequency fluctuations
(ALFF) (Yang et al., 2007; Zang et al., 2007; Zou et al., 2008, see
Glossary) and regional homogeneity (ReHo) (Zang, Jiang, Lu, He, &
Tian, 2004, see Gloassry). The conjunction of the two techniques
provides information not only on the activity of a voxel, but also on
its engagement with neighboring voxels.

These two quantitative analyzes of the BOLD signal are often
associated with more complex and integrative qualitative analyzes.
One of this main qualitative analysis is graph-theory (see Glossary).
First, the whole-brain network is defined as FC relationships be-
tween all pairs of node. Most of the time, a threshold is applied to
the whole-brain network result to identify the strongest set of con-
nections. Next, based on this whole-brain network, it is then possible
to obtain parameters defined at a global and regional level, including
efficiency, integration, or segregation (see Rubinov & Sporns, 2010
and Glossary). In addition, based on node parameters, in partic-
ular centrality, it has been possible to identify brain hubs defined
as key-connected brain regions (Cole, Smith, & Beckmann, 2010;
Power, Schlaggar, Lessov-Schlaggar, & Petersen, 2013, see Glossary).
All these parameters lead to evaluate how much a network meets
small-worldness criteria characterizing its efficiency in processing

the information (see Glossary).

3 | FETAL PERIOD: EMERGENCE OF FC TO
PROTO-NETWORKS OF DMN

During the fetal period, the brain undergoes important developmen-
tal processes. During the second trimester, the fetal brain growths
rapidly, through synaptogenesis and dendritic germination which
lead to the elaboration of neural connections (Kandel, Schwartz, &
Jessell, 2000). During the last trimester of pregnancy, these neu-
ronal connections become active as synapses form and allow the

emergence of functional communication in the fetal brain. Although

hJ_:i

applying rs-fMRI to investigate newborn brain development remains
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an emerging area, recent advances have permitted to detect spon-
taneous fluctuations in the BOLD signals in the human brain during
intrauterine life.

The strength of this functional communication increases with
fetal age, in particular for long-range connections (Jakab et al., 2014;
Thomason et al., 2014, 2015) and varies across fetal brain areas
(Schopf, Kasprian, Brugger, & Prayer, 2012; Thomason et al., 2013;
Table 1; Figure 1). Using ICA analysis to map the spatiotemporal
components of prenatal brain activity, first fetal functional brain
connectivity studies revealed intralobar (Schépf et al., 2012) and
cross-hemispheric connections in typically developing fetuses
(Thomason et al., 2013). More specifically, a bilateral occipital func-
tional component, including the primary visual cortex and the fu-
ture secondary visual cortices, was observed. Bilateral components
were also reported in medial and lateral prefrontal, and unilateral
ones in the temporal lobe (mainly right; Schopf et al., 2012). In ad-
dition, Thomason and colleagues (2013) measured FC in the left
hemisphere and evaluated the strength of connectivity for each
contralateral region in the right hemisphere (see Glossary). They
showed that only half of the bilateral functional systems of the brain
presents cross-hemispheric connectivity and that the FC strength
(see Glossary) between homologous regions increases with fetal age.
By measuring the regional variation in FC, this study also reported
a regional heterogeneity in FC with especially high FC in medial and
posterior brain regions.

Using Euclidean region-to-region distances to define short-
(<25th percentile of z-score) and long-range (>75th percentile)
connections, Jakab and colleagues (2014) described a key phase
occurring between 26th and 29th gestational age (GA), which has
been called "expansion period." Before 26th GA, FC architecture is
characterized by short-range connections within some of the pri-
mary functional lobes, in particular bilateral occipital, and unilat-
eral temporal connections, while interhemispheric connections are
sparser (see Ouyang, Kang, Detre, Roberts, & Huang, 2017 for re-
view). After 29th GA, the proportion of long-range connections be-
comes significantly higher. More specifically, there is an increase in
long-range connections between the frontal and temporal lobes as
well as FC strength within the frontal and then in the parietal lobes.
This suggests a heterogeneity in the proportion of short- and long-
range connections during GA that indicates a temporal sequence of
FC setup in occipital, temporal, frontal, and finally parietal regions
(Jakab et al., 2014). This also partially supports the idea mentioned
above that FC increases following a medial-lateral and posterior-
anterior trajectory (Schopf et al., 2012; Thomason et al., 2013).

In accordance with these findings, employing seed-based con-
nectivity analyses to identify 10 specific intrinsic connectivity
networks (ICNs, see Table 1) in three different fetal age groups,
Thomason et al. (2015) also showed that older fetuses present
more long-range connections than younger ones. That study also
exhibited that connectivity within ICNs is stronger in older fetal
age, while connections to regions outside of ICNs is reduced,

compared to younger. FC of cortical-subcortical (motor regions
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FIGURE 1 Schematic overview based on studies reported in this review. Right panel indicates emergence of functional connectivity
and proto-networks during fetal period. Left panel indicates developmental evolution of functional connectivity in childhood. Each color
corresponds to a specific network. Continuous lines represent within network connectivity and dotted lines represents between network

connectivity; m, month; w, week; vy, year

to thalamus), intrahemispheric (posterior cingulate cortex (PCC)
to medial prefrontal cortex (PFC)), and interhemispheric (bilateral
PFC and motor cortices) cortical, cortical-cerebellar (motor corti-
ces to controlateral cerebellum) network increase with fetal age
and cerebellar regions begin to set up FC with the cortex. More
specifically, there is an intrahemispheric increase between the me-
dial PFC and the PCC regions often described as belonging to the
default mode network (DMN) in the adult brain (Raichle, 2015).
This suggests that around 35 weeks, a precursor form of the DMN,
also called “proto-DMN,” seems to be already present. On the con-
trary, FC between the PCC and dorsal attention/executive regions
becomes more negative with fetal age. This early emergence of
anticorrelated connections between the PCC and other brain net-
works regions suggests that the PCC could play a critical role in
establishing functional networks. Other functional networks such
as sensorimotor (SMN), visual (VIS), and auditory (AUD) networks
have also emerged, in an immature form, from the 30th week
(Thomason et al., 2015). This indicates that during the third tri-
mester of pregnancy basic forms of human intrinsic networks are
observed in fetuses’ brain.

Recent studies have also used graph-theory to explore the archi-
tecture of the resting-state fetal brain (also called Topography, see
Farahani, Karwowski, & Lighthall, 2019; Sporns, 2018; Zhao, Xu, &
He, 2019 for review and Glossary). These studies revealed a modu-
lar organization—which represents a group of highly interconnected
brain regions, also called “network”—of the fetal brain and the pres-
ence of hub regions before birth (see Oldham & Fornito, 2019 for

review). This modular organization has been described in a study
including 33 fetuses (27-34 weeks) with findings showing that not
only connectivity between the modules is increased in older fetuses
compared to younger, but also that these modules are specific to the
occipital, auditory, and motor regions. These results support a pre-
vious study that described increase in long-range connections with
fetal age. This study also revealed that older fetuses present a mod-
ule comprising dorsal posterior and medial frontal regions, not ob-
served in younger fetuses (Thomason et al., 2014). This is supporting
the presence of a proto-DMN in fetal brain. It is noteworthy that
modularity is characterized by higher connectivity within-modules
and lower connectivity between-modules; therefore, these results
together suggest that in the fetal brain, the development is primarily
focused on independent functional systems, referring to the notion
of segregation (Friston, 2002), rather than integration at this point.
Regarding the functional brain hubs regions, a recent study
identified FC hubs consistently located in primary sensorimotor,
auditory, motor, and visual regions (van den Heuvel et al., 2018).
Some hubs in the association cortex were also found close to adult
fusiform facial region (inferior temporal lobe) and Wernicke's area
(angular gyrus). When authors split the participants’ data in those
of younger (<35 weeks) and older (>35 weeks) groups, angular and
precentral gyrus hubs were identified in the younger group, while
temporal hubs were found in the older group. That study also found
functional hubs in the cerebellum, supporting the previous find-
ings and re-emphasizing the role of this structure in development.

Interestingly, removing hub regions from the analysis of the fetal
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FIGURE 2 Schematic overview of functional connectivity
changes from adolescence to young adulthood based on studies
reported in this review. Each color corresponds to a specific
network. Continuous lines represent within network connectivity
and dotted lines represents between network connectivity; y, year

networks affects the global efficiency (Turk et al., 2019; van den
Heuvel et al., 2018) which suggests that hubs regions evidenced
in fetal networks could play a crucial role in functional communi-
cation during fetal life. Therefore, fetal resting-state fMRI studies
support fetal origins of these functional networks and suggest an
early emergence of topology architecture in the developing brain
(see Glossary). Yet, caution should be exercised because all studies,
but one (van den Heuvel et al., 2018), were based on small sample
sizes which is a strong bias during FC analysis. Overall, during fetal
period, there is a key "expansion period" reflected the development
of primarily independent functional systems characterized by a tem-
poral primary-to-high-order sequence of FC networks followed by a
progressive ongoing process of integration. These progressive pro-
cesses lead to the early emergence of basic topology architecture
with the presence of proto-networks and proto-DMN network in

particular in fetuses’ brain (Figure 1).

4 | THE FIRST YEARS OF LIFE: A
WIDESPREAD ORGANIZATION

4.1 | Newborns and toddlers’ studies

Currently, only a few studies have focused on the nonpathologi-
cal functional brain development in the first years of postnatal life
(Table 2, Figure 1). However, newborn studies showed the existence
of adult-like primary sensory motor (SMN), auditory (AUD), and vis-
ual (VIS) networks supporting fetal fMRI findings. In addition, they
revealed the emergence of higher order networks (Figure 1). Indeed,

using seed-based FC to define specific networks in a longitudinal

h 13

investigation, Gao and colleagues mapped and followed the matura-

Neuroscience Researc

tion trajectories of nine main resting-state networks every 3 months
during the first year of life for 65 infants (born at 35 to 42 weeks ges-
tation; Gao, Alcauter, Elton, et al., 2015). Linear mixed-effect model
was used to compute the longitudinal evolution for each within- (i.e.,
between seed region and regions inside the network) and between-
(i.e., between seed region and regions outside network) functional
networks. They found that the SMN and AUD networks are largely
established at birth and exhibit rather stable connectivity during the
first year, supporting previous studies showing a bilateral symmet-
ric and adult-like architecture of both networks before birth (Schopf
et al., 2012). In addition, they reveal that the primary and secondary
VIS networks presented a continuous quantitative within network
increase (reflecting correlations between regions within a specific
network), with the fastest growth rate between 0 and 3 months, be-
coming more and more similar to adults’ networks architecture. This
suggests that the VIS network is the second earliest functional net-
work to be established in the newborn brain. Unlike primary sensory
networks, dorsal attention network (DAN) and DMN are immature
before birth and then present a continuous and significant matura-
tion to achieve adult-like network architecture and strength at the
end of the first year (Gao, Alcauter, Elton, et al., 2015). More specifi-
cally, for the DMN, Gao et al. found a within network connectivity
increase in bilateral posterior regions (hippocampus, inferior parietal
lobe, and PCC) during the first 6 months followed by a within net-
work connectivity increased of remote DMN regions (medial PFC
and lateral temporal cortex) during the following 6 months. In addi-
tion, Emerson, Gao, and Lin (2016) investigated longitudinal changes
of the FC in the language-related areas. They showed an increased
cross-hemispheric connectivity of Broca's and Wernicke's areas at
1-year. However, during the second year, these regions' connec-
tions become lateralized in a similar way as that of adults (Emerson
etal., 2016). This suggests that the DAN and DMN are the third earli-
est networks and language network is the fourth to be developed in
the newborn brain. In contrast, the salience (SAL) and the bilateral
frontoparietal (FP) networks are characterized by a slower increase
compared to others (Gao, Alcauter, Elton, et al., 2015). Thus, these
two networks still present an immature form at the end of the first
year which suggests that they are the latest emergent functional
networks among the nine networks examined (Gao, Alcauter, Elton,
et al., 2015). This suggests that networks development during in-
fancy seems to follow a primary-to-higher order sequence. Among
a set of 14 networks, a within network connectivity increase (in
conjunction with a decrease in between network connectivity) was
observed for nine networks from neonates to 2 years, whereas an in-
crease in between network functional FC was observed for four net-
works (AUD/language and DMN with FP networks). This suggests
that during the very first years of life, FC changes were mainly driven
by within network increase and a more subtle increase in between-
network for specific networks (Figure 1).

Using the same longitudinal data set and methods, Alcauter,
Lin, Keith Smith, Gilmore, and Gao (2015) revealed that, during the

first year of life, primary sensory networks and “proto” high-order
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FIGURE 3 Schematic overview based on studies reported in this review. Right panel indicates functional connectivity during young
adulthood. Although the exact time of transition is not yet clear, studies suggest a turning point period around 40 years. Left panel represent
functional connectivity changes from middle-aged to older adult. Here again, studies suggest a turning point period around 70-75 years
characterized by a more pronounced of functional connectivity changes. Each color corresponds to a specific network. Continuous lines
represent within network connectivity and dotted lines represents between network connectivity; y, year

networks presented also connections with the subcortical regions,
in particular with the thalamus (Alcauter et al., 2015). More spe-
cifically, the thalamo-primary sensory network becomes more dis-
tributed and the thalamo-salience connectivity emerge at birth and
strengthen with age. New projections to the DMN emerge at 1-year
and become more distributed in the second year of life. In a sec-
ond longitudinal study that included 333 newborns followed from
birth to 2-year, Gao and colleagues have explored with the same
previous methods the evolution of between-network FC (using lin-
ear mixed-model), in particular the link between the DMN and the
DAN well-known to be anticorrelated in adult brain (Gao, Alcauter,
Smith, Gilmore, & Lin, 2015; Gao et al., 2013). They found that the
anticorrelation is absent in neonates but tends to appear around
1-year and strengthens during the second year of life (Gao, Alcauter,
Smith, et al., 2015). Despite this result is in contrast with Thomason
et al. (2015) regarding the age of anticorrelations, emergence stud-
ies agree on one point. Yet, the brain regions’ resolution could have
an influence in timing difference (seed-based centered on PCC and
ICA-network level). Therefore, these longitudinal studies suggest an
increase in strengthening of FC within-networks until 1 year of age
(i.e., a functional segregation process) while the strengthening of FC
between-networks is an ongoing process at 1 year and is then en-
hanced during the second year. Thus, there is a network configura-
tion change from local (during the first year) to distributed network
structures (during the second year). This also suggests that for each
network there are different and specific critical periods during de-

velopment. However, here again caution should be exercised as the

characterization of specific network trajectories needs to be exam-
ined in more detail.

In line with fetal graph-based results, newborn studies indicate
the existence of an adult-like network topology. A recent study has
explored modularity and hub trajectories with a longitudinal design
of 51 newborns aged O to 12 months (Wen et al., 2019). The au-
thors reveal an increase in within- and between-modular FC, but
with different developmental trajectories. The within-modular FC
is characterized by a fast increase during the first 3 months and a
lower increase thereafter, while the between-module FC exhibits a
continued growth (Wen et al., 2019). These modules are progres-
sively reshaped or subdivided; and, new modules emerge transiting
from four to eight modules during the first year. In addition, the hubs
configuration, mostly located in primary sensory networks in neo-
nate brain, seem to gradually change to adult-like topology during
the first years of life. Asis-Cruz, Bouyssi-Kobar, Evangelou, Vezina,
and Limperopoulos (2015) revealed new locations of functional hubs
in subcortical-limbic-paralimbic areas and also in association areas,
in particular the precuneus (Asis-Cruz et al., 2015). Moreover, Wen
et al. reported that if the hubs are first located in primary sensory
networks, they spatially extent to the cingulate cortex, the temporal
lobe, and the thalamus around 6 months old. After 9 months old,
newly emerging hubs have been found in the higher order networks
included lateral prefrontal, the insula, and parietal regions. Taken to-
gether, these studies put forward progressive functional integration
resulting in an organization of functional connections between re-

mote regions and between network connectivity. In addition, using
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a small-world index, Asis-Cruz and colleagues highlighted a small-
world topology in healthy neonates’ brains. This suggests that an ef-
ficient configuration is taking place in neonates’ brain and supports
the previous results because the small world is based on an optimal
balance between functional integration of the brain and segregation
(Asis-Cruz et al., 2015).

Interestingly, DMN is one of the first higher order networks to
show not only a proto-form at fetal stage, but also a well-distributed
network structure including distant medial frontal, medial, and lateral
temporal, as well as medial and lateral parietal regions at 6 months
(Figure 1). This finding is consistent with the rapid emergence of
self-awareness during the first year of life and suggests that the de-
velopment of functions associated with DMN likely serves as a foun-
dation for other higher order functions to be built on. Moreover, FC
of the DMN has been associated with social-environment processing
in 1-year-old children (Gao, Alcauter, Smith, et al., 2015), suggesting
that it would relate to a child's early social development and attach-
ment. Considering that the DMN is associated with self-reflection
(Whitfield-Gabrieli et al., 2011) and social cognition (Saxe, Carey, &
Kanwisher, 2004), and that the PCC is central for emotional process-
ing of faces (Ramasubbu et al., 2007), the emergence of high-order
networks is concordant with the particularly sensitive time in normal
development, when children become independently mobile (rolling,

scooting) and begin to show language skills.

4.2 | Children studies

Until now, resting-state functional brain development in children be-
tween 2 and 6 years old, the preschool period, has been understud-
ied and therefore, the healthy brain development trajectories during
the preschool period remain poorly understood (Table 3; Figure 1).
However, one research team has managed to explore this specific
period in young children aged 2 to 6 years using passive viewing
functional acquisition (Long, Benischek, Dewey, & Lebel, 2017).
Using data-driven analysis and longitudinal data (using ALFF and
ReHo; and eigenvector centrality mapping), they found that DMN
nodes exhibited an increase in both local and global FC during the
preschool years; of note, PCC only showed an increase in global
connectivity. This suggests a strengthening of this network which
would occur during this period. In contrast, some nodes belonging to
the FP network (which is anticorrelated with the DMN in adulthood)
show an increase in local connectivity. This suggests that this net-
work undergoes rather a segregation process during early childhood.
They also found a transition to more local connectivity between the
superior parietal and fusiform gyrus with age, whereas superior
temporal regions present an inverse reshape pattern, from local-to-
global strengthening of connectivity. These results were reproduced
by another longitudinal study that has explored the development of
the language networks in children from age 5 to age 6 by using a
graph-based method (Xiao, Friederici, Margulies, & Brauer, 2016).
They revealed a similar presence of hubs, mainly in the DMN net-

work and in temporal cortex, which strengthen over a 1-year period.

h 15

Overall, during this preschool period, there are age-related changes
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characterized by an increase in local and global connectivity in the
nodes within the DMN and an increase in local connectivity within
the FP network. Therefore, this period seems to be associated with a
progressive reorganization, transitioning from local-to-global in the
superior temporal gyrus, and from global-to-local in the superior pa-
rietal lobule and fusiform gyrus. In addition, these results support
previous studies which have suggested a maturation sequence spe-
cific to each network (Figure 1).

Furthermore, Chai, Ofen, Gabrieli, and Whitfield-Gabrieli (2014)
have explored more specifically the between network connectivity
of the DMN with other networks from 8 to 24 years using seed-based
analysis. In children (8-12 years), a positive correlation was observed
between medial prefrontal cortex and dorsolateral prefrontal cor-
tex, as well as between left middle frontal gyrus, left precuneus, and
right supramarginal gyrus, while the adolescents (13-17 years) group
showed a negative correlation between these regions. Moreover,
quadratic modeling revealed an increase in anticorrelations between
medial prefrontal cortex and dorsolateral prefrontal cortex with a
maximum value reached around 18-20 years which stabilizes there-
after. This suggests that the typical anticorrelations between DMN
regions and other networks appear during adolescence (13-17 years)
and strengthen in young adults (18-24 years). Considering that these
changes of functional brain architecture occurred in regions well-
known to be crucial for working memory (dorsolateral prefrontal
cortex) and attention (supramarginal gyrus and middle frontal gyrus),
it was suggested that the emergence of an anticorrelated network
could be related to the maturation of cognitive control and execu-
tive functions (Chai Ofen et al., 2014) as well as affective processes
(Arsalidou, Sharaev, Kotova, & Martynova, 2017). Finally, a recent
study using spectral dynamic causal modeling, which provides infor-
mation of causal interactions between regions or networks (effec-
tive connectivity), has examined the connections between regions
of anticorrelated networks including DMN, DAN, and SAL in 420 ad-
olescents and young adults (14-23 years). They reported inhibitory
connections from the SAL and the DAN networks on DMN network,
while the DMN exhibited excitatory connections on both the SAL
and DAN networks. Thereby, this study shows that in adolescents
and young adults, anticorrelated networks are already established
and exert influence with each other's (Zhou et al., 2018). This is in
accordance with Chai et al., who suggested that anticorrelated net-
works emerge at about 13-17 years. However, these findings are in
contrast with two previous studies that reported an earlier emer-
gence of anticorrelation at fetal (Thomason et al., 2015) and 1-year
which are enhanced during the following years (Gao, Alcauter, Smith,
et al., 2015). Although Zhou et al. and Chai et al. studies differ on
the FC method (ICA versus seed-based), they found similar results
for a same age period. This suggests that discrepancy with previous
findings may be due to difference between studies designs (longitu-
dinal vs. cross-sectional), node resolution, and age period. Moreover,
Gao et al. has employed adult templates to define ICA component
which could influence the infancy FC results (Gao, Alcauter, Smith,

et al., 2015). These conflicting results emphasize the need of further
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studies to characterize the changes in anticorrelated networks
across development.

5 | FROM ADOLESCENCE TO YOUNG
ADULTHOOD: A REFINEMENT PERIOD

5.1 | Adolescence

FC changes during adolescence were based on a compromise be-
tween strengthening and stability (Table 4; Figure 2). In a study with
192 participants aged between 10 and 26 years old and divided into
groups of children (10-12 years), early adolescents (13-15 years), late
adolescents (16-20 years), and young adults (20-26 years), Marek,
Hwang, Foran, Hallquist, and Luna (2015) used Bayesian inference
analyses to evaluate modular organization and define five brain's
networks in the age groups. In the first analysis, Pearson correla-
tion coefficient was used to evaluate global changes in FC strength
between groups. Next, graph-theory analysis was used to explore
the developmental trajectories of between network connectivity
(participation coefficient) from children to young adults. No signifi-
cant networks reorganization was found from childhood to young
adulthood with Bayesian inference analysis. This suggests a stabil-
ity of networks’ modular organization during this period. However,
a global decrease in connectivity strength for both within- and be-
tween-networks from childhood (10-12 years) to early adolescence
(13-15 years) was observed. From early adolescence (13-15 years)
to late adolescence (16-20 years) within network connectivity stays
stable, while between network connectivity increases. Of note, for
DMN and FP, a stability of within network connectivity strength
from childhood to early adolescence and of between network con-
nectivity strength during adolescence (13-20 years) was observed.
These results suggest a shift from within network connectivity (spe-
cialization) predominance to between network connectivity (integra-
tion of information across functional domains) during adolescence.
Also, subject-based analyses revealed that development trajecto-
ries of participation coefficient—which refers to the level to which
a node or module (i.e., network) establishes connections to other
networks—increases significantly only for the cingulo-opercular/sa-
lience (CO/Salience) network (including the insula, the cingulate and
middle frontal regions) from late childhood to 14 years, and then be-
comes stable. In contrast, average-based analyses revealed different
development trajectories of participation coefficient according to
the network. More specifically, a quadratic maturation trajectory for
the DMN (decrease then increase) and VIS (increase then decrease)
networks with age (both in transition around 18 years), and a cubic
trajectory for the FP network were observed. In contrast, SMN is
characterized by a stability during these periods (Marek et al., 2015).
These results reinforce the idea that each network is characterized
by a specific trajectory across development and suggest a key period
for transition around early adolescence (13-14 years). This suggests
that the architecture of large-scale functional networks is present

in children and seems to be stable until young adulthood (Figure 2).

Despite this network's modular organization stability, changes ob-
served in FC strength suggests that this within- and between net-
work connectivity strength were sensitive to network refinement.
Finally, in a very recent longitudinal study, Vasa and colleagues
(2020) employed multi-echo fMRI (see Glossary) in conjunction with
correlational analyses based on a FreeSurfer parcellation to evaluate
the trajectories of functional brain changes on 298 participants aged
between 14 and 26 years. At baseline (14 years), a strong positive
connectivity among cortical regions, as well as between cortical
and subcortical regions, especially including primary and sensory
regions, was observed. From baseline (14 years) to last follow-up
(26 years), cortical primary and sensory regions (with other corti-
cal regions) as well as connections between subcortical (putamen,
the pallidum, and the thalamus) and association regions (frontal and
parietal cortex) seem to reinforce their functional connections. In
contrast, connections between subcortical regions and some pri-
mary and sensory (motor) regions exhibited a FC decrease. Authors
suggest that these changes reflect two different processes during
adolescence: a “conservative mode,” which refers to the strength-
ening of preexisting connections during adolescence (i.e., increase
connectivity) and a "disruptive mode" which consists of a slight in-
crease in FC or a decrease in strength of preexisting connections.
The authors stated that the “rich get poorer, and the poor get richer”
(Vasa et al., 2020). Overall, adolescents’ functional brain maturation
seems to be mainly driven by a transition from within- to between
network changes which occurred without reorganization of large-
scale networks architecture. Therefore, there would be a re-model-
ing of functional connections, resulting in a progressive and subtle
refinement of functional networks. This refinement could be akin
to pruning of unnecessary connections and the persistence of rele-
vant connections, which finally could improve functional networks

efficiency.

5.2 | Young adulthood

Currently, most studies directly compared young (<30 years) and old
adults (>60 years), while only a few ones studied young and middle-
aged individuals (Marek et al., 2015; Siman-Tov et al., 2016; Varangis,
Habeck, Razlighi, & Stern, 2019; Table 4; Figure 3).

Marek and colleagues have also explored the transition from
late adolescence (16-19 years) to the beginning of adulthood (20-
26 years). Global connectivity strength analysis showed that within
network connectivity strength shifts to a decrease, while between
network connectivity continued to increase during this period.
Moreover, from late adolescence to young adult, average-based
analysis of DMN and VIS network participation coefficient showed
an inversion of childhood to adolescence-described trajectories. The
FP network, whose participation coefficient decreases until late ad-
olescence, presents a significant increase thereafter to young adult-
hood. These results are supported by regional analyses showing a
significant strengthening reflected by an increased participation's
coefficient of DMN, SMN, VIS, CO/SAL networks nodes, and, for the
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first time the FP network nodes. Detailed findings of this study add
evidence that the growing integration process of widely distributed
but stable networks initiated during adolescence continues until
young adulthood to achieve an adequate balance between segrega-
tion and integration processes. In addition, a global increase in con-
nectivity strength between networks, in particular for higher order
networks, improves the ability for different networks to collaborate
(Marek & Dosenbach, 2018).

A recent life span study, comprising 427 healthy adults between
20 and 80 years old divided into four age groups, was carried out
but with solely results for young adults (20-34, n = 103) to younger
middle-aged adults (35-49, n = 63) reported (Varangis et al., 2019).
In this study, analyses of positive and negative correlation strengths
(Pearson's correlation) were conducted separately. Power et al.'s.
(2011) network assignments were used to define 10 functional brain
networks (network level). In addition, based on the within- and be-
tween network connectivity strength, authors established a seg-
regation measure (reflecting the degree to which the brain nodes
within networks run independently of the other ones). In a second
time, positive and negative strengths were explored for these net-
works (network level). Results of between-group comparison re-

vealed no specific network differences, even though whole-brain

Brain network
organization

Emergence of proto-
networks

Expansion period Primary to high-order

network maturation
Proto-

networks

Emergenc
eof FC

Global changes
within and between-network
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Adequate balance between
segregation and integration processes
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analysis revealed a decrease in system segregation, mainly driven by
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decrease in within network connectivity (Varangis et al., 2019). This
decrease in within network connectivity for the whole-brain is con-
cordant with Marek et al. (2015). Moreover, this suggests that a de-
crease in within network connectivity strength is a process starting
during late adolescence which continues until younger middle-aged
adults. In addition, the fact that these whole-brain changes occur
without affecting networks connectivity may suggest that large-
scale network organization remains stable during this period.
Another study supports the idea of reassignments of connec-
tions during this period. Using seed-based analysis to identify seven
human brain networks, Siman-Tov and colleagues (2016) compared
FC strength (Pearson's correlation) within- and between-networks
across three age groups from young to old adults. Six networks
showed a significant decrease of their connectivity strength (DMN
in particular), while the motor network (MN) exhibited an increased
connectivity strength when comparing middle-aged adults (41-61
years) to young adults (21-40 years). More specifically, within the
DMN, the connectivity strength was decreased between a seed re-
gion (left PCC) and the ventromedial PFC, the right lateral temporal
cortex, and the left frontal pole, while a reduction of anticorrela-

tion strength between the left PCC and frontal regions bilaterally

Brain network re-organization

High-order to primary changes
Break in balance between segregation
and integration processes

20y 25y 30y 40y 50y 60y 70y 80y

Young adults Middle-aged adults Older adults

--- Between-network

FIGURE 4 Schematic overview of functional connectivity changes across life, from its emergence during fetal period to its decline in
older adults based on studies reported in this review. Upper panel indicates global within- and between network changes and lower panel
indicates specific between network trajectories across life span. Each color corresponds to a specific network. Continuous lines represent
within network connectivity and dotted lines represents between network connectivity; m, month; w, week; vy, year
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was also observed. Within the MN, the connectivity strength be-
tween cortical regions and a seed region (LMC), and anticorrelations
between the seed region and posterior cerebellar and subcortical
regions (thalamus, basal ganglia) were increased. Therefore, the
transition from young to middle-aged adults is characterized by a
decrease in within network connectivity of higher order networks,
except for MN (increase connectivity). Regarding between network
connectivity strength, except FP network, all higher order network
exhibited changes of their between network interactions with pri-
mary sensory network between young adults (21-40 years) and mid-
dle-aged (41-61 years) adults: decrease between DMN, SAL, DAN
and MN, AUD, VIS (respectively) and an increase between DAN and
SAL with MN, AUD, VIS. In addition, an increase in between-primary
sensory networks (AUD-MN) as well as high-order networks (DMN
and FP) was found for this age period. Moreover, a loss of negative
connectivity between DMN and SAL, DAN, and between DAN and
FP was also reported (Siman-Tov et al., 2016). This suggests that from
young to middle-aged adults’ period, there is a reorganization of be-
tween network interactions for higher order networks. Therefore,
from young to middle-aged adults, high-order networks connectivity
changes are induced mainly by a reorganization through decrease
and increase in connectivity strength between high-order and pri-
mary sensory networks. This period is also characterized by a loss
of anticorrelations between higher order networks. Finally, these
increases and decreases in both correlations and anticorrelations
between networks are already evident in middle-age and could be
interpreted as reduced selectivity and specificity, that is, segrega-
tion, in the middle-aged brain's functional architecture.

Taken together, these findings suggest that FC within- and be-
tween network changes from childhood to young adult and reaches
a stable level during adulthood characterized by a refinement of
connections before starting to decline at middle-age adulthood
(Figure 3).

6 | FROM MIDDLE-ADULTHOOD TO
ELDERLY PEOPLE: A REVERSAL PROCESS?

Contrary to young and middle-aged adults, older adults have been
widely studied. However, there is still some discrepancy regarding
trajectory changes (increase vs. decrease) and more specifically con-
cerning advanced age-dependent FC changes. This inconsistency
may be due, at least in part, to direct comparison between young
and older adults without considering middle-aged adult (Table 5;
Figure 3).

In their life span study, Varangis and colleagues have explored
the transition from old middle-aged adults (50-64, n = 136) to older
adults (65-80, n =
(35-49, n = 63). Authors used not only previous whole-brain and

146), in addition to young middle-aged adults

network-level functional measures but also metrics derived from
graph-theory method such as participation coefficient, modularity,
as well as local and global efficiencies. Between younger and older

middle-aged adults, a higher whole-brain participation coefficient

was found in older group compared to younger group. At a network
level, older middle-aged adults presented significant lower posi-
tive within network connectivity for the AUD and DAN networks
compared to young middle-aged adults, whereas there was no dif-
ference regarding between network connectivity. These findings
support previous study suggesting that after a stable level during
young adult, within network FC declines during middle-age adult-
hood. In agreement with these findings, a graph-based study which
compared young (mean age 24.6 years) and middle-aged adults
(mean age 58 years) also reported lower within network strength
connections (mainly within DMN) but, in contrast, revealed higher
between network strength connections (mainly between SMN and
attentional networks) in old subjects compared with the younger
group (Song et al., 2014). These results suggest that functional brain
networks were less segregated, and therefore less specific. These
results also reinforce the idea of specific network-level trajectories
across adulthood. In addition, Varangis et al. have also explored the
transition from older middle-aged adults (50-64, n = 136) to older
adults (65-80, n = 146). However, no significant differences were
found between older middle-aged and older adults. This result sug-
gests that between older middle-aged and older adults, there are
no main changes in brain network organization. However, some
differences were found at whole-brain and network-level between
younger middle-aged and older adult. Indeed, the higher whole-
brain participation coefficient observed from younger to older mid-
dle-aged persists between younger middle-aged and older adults.
In addition, older adult exhibit lower average positive connectivity
compared to young middle-aged adults. This suggests that even in
the absence of difference between older middle-aged and older
adults, some changes may occur in older adults. In line with the pre-
vious whole-brain findings, lower within network connectivity for
the AUD and DAN networks in older adult compared to young mid-
dle-aged adults was preserved. However regarding between net-
work connectivity, this comparison revealed a significant decrease
in between network connectivity between CO and DAN networks
(Varangis et al., 2019). Here again, these results suggest that whole-
brain connectivity changes during aging, but the absence of differ-
ence between older middle-aged and elderly suggests a gradually
long-term processing change that cannot be captured by direct older
groups comparisons. These findings were supported by the similar
observations obtained by the comparison between young adults
and older middle-aged adults that revealed higher changes at the
whole-brain and the networks level in comparison to the difference
between youths and older middle-aged results. Several ICA-based
studies confirmed the pattern of decrease in FC within-network and
support the idea that changes occur gradually across age groups
(Archer, Lee, Qiu, & Chen, 2016; Deslauriers, Ansado, Marrelec,
Provost, & Joanette, 2017). This may suggest that there is a first step
consisting of a within network decrease at middle age followed by
more pronounced changes including between network connectivity
in older adults (Figure 3).

In agreement with this study, in a large sample included 430

healthy elderly participants aged from 51 to 85 years, Huang and
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colleagues (2015) used an ICA-based method to identify networks.
They found an age-related decrease in the overall connectivity
strength within-network, especially the ventral part of the DMN,
but also VIS and right FP networks. In addition, regional analyses
revealed increases in FC between anterior DMN (aDMN) and AUD
as well as between the cerebellum and visual areas, while FC de-
creased between anterior and posterior part of the DMN and be-
tween posterior DMN (pDMN) and AUD networks. These findings
support previous findings but revealed also an increase in between
network connectivity, instead of just a decrease. Moreover, this
study reinforces the idea that among higher order networks, the
DMN presents age-related vulnerability, and suggests a particular
age-related sensibility to decline of the ventral part of this network,
in comparison to anterior and posterior parts. Considering that the
ventral DMN (vDMN) includes the hippocampus, which is a key re-
gion of memory processes, a decrease in FC is thus concordant with
the memory alteration observed in normal aging (Huang et al., 2015).

More recently, in a study including 114 healthy individuals aged
from 48 to 89 years, Farras-Permanyer and colleagues (2019) em-
ployed correlational analyses of whole-brain FC and its networks’
characteristics through density (r > 0.2) and intensity (r > 0.5) to ex-
amine age-related changes across six aged-groups: <60, 60-64, 65-
69, 70-74, 75-79, and 280 years old. Using AAL atlas, the authors
identified five networks: DMN (parietal and temporal mid regions),
aDMN, vDMN, SMN and VIS. Whole-brain analysis confirmed previ-
ous findings describing that with increasing age, there is decreased
FC density in the 60 to 79 aged-group. Moreover, within-network
FC of SMN as well as anterior and ventral DMN showed a decrease
in density starting around the age of 60 and becoming more pro-
nounced from 65 and 79 years. Moreover, the authors reported
that there is a decrease in whole-brain intensity without density
changes from 70 to 74 years. In the next aged-group (75-79 years),
whole-brain intensity continues to decrease but in conjunction to a
decreased density. In addition, for this age range, FC within vDMN
exhibited a decreased density (Farras-Permanyer et al., 2019). This
result is consistent with the ones of Huang et al. reporting a de-
crease in vDMN within-network FC (Huang et al., 2015). In contrast,
the authors revealed for the first time that subjects over 80 years of
age show higher density connections compared to the four groups
>60 years. In addition, network analyses revealed that this old-
est group exhibit a similar density of connections to the group of
60-64 years for aDMN and an increase density for DMN and SM
regions. Overall, a pattern of decrease in FC was observed between
60 and 74 (even more pronounced from 75 to 79 years old) with
then an increase in subjects aged above 80 years. This suggests a
progressive and nonlinear changes of whole-brain FC during aging
with a turning point around 75 years.

In agreement with this study, a recent DMN longitudinal study
comprising 111 participants aged between 49 and 87 years reported
that FC of the DMN was characterized by a nonlinear trajectory
from late middle-aged adults to older ones (Staffaroni et al., 2018).
Indeed, they reported that DMN FC which first increased between

ages 50 and 70 was stable around age 70, and finally decreased when
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individuals entered in age above 74 years. However, in contrast to
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Huang's results, analysis revealed a specific age effect for the an-
tero-posterior DMN subpart. Noticeably, in contrast to previous
studies, Jockwitz and colleagues (2017) reported no change within
the DMN FC in a population-based sample of 711 older adults (aged
55-85 years) using an ICA-based method (Jockwitz et al., 2017). A
main key difference, which could explain these different patterns
of result, is the definition of what is network: Staffaroni et al. used
modularity measures, whereas Huang et al. used ICA-based network
assignment to define DMN subnetworks and finally Jockwitz et al.
investigated solely the DMN. Overall, these studies suggest more
complex age-related changes in FC than a linear decrease as mostly
reported. Yet, these findings tend to confirm the existence of a turn-
ing point around 75 years of age. In addition, despite inconsistency
in specific changes for DMN subparts, most of the studies agree on
specific sensitivity of the DMN to the effects of aging, which appear
to be inhomogeneous in the DMN (Huang et al., 2015; Staffaroni
et al., 2018). Together, this suggests that parcellation of the DMN
into different subnetworks may influence findings on effects of
aging and suggest that may need to consider the subnetworks to
evaluate the trajectories of FC in aging for further study.

It is noteworthy that a very recent longitudinal study com-
prising 2,878 healthy participants aged between 50 and 95 years
(Rotterdam Study) has reinforced all the previous reported studies
by showing that within the aDMN, VAN, and SMN networks, FC
decreases with age, with an even more pronounced decline after
65 years. In contrast, FC increases with age within the VIS network
and between network analyses revealed increases and decreases
in correlations for both correlated and anticorrelated networks
(Zonneveld et al., 2019). More specifically, they observed an increase
in between-network FC between higher order networks, mainly for
short-range connections (for instance DMNa-FPN and DMNp-DAN)
and also a FC decrease between of the DMN with other networks.
This suggests that during older age, increases in between networks’
connectivity involve anatomically close brain regions. In addition,
higher order networks exhibited a loss of negative connectivity
between them, while connections with primary sensory network
become more anticorrelated. Interestingly, temporal between net-
work connections were characterized by a transition from positive
to negative (or inversely) connectivity (Zonneveld et al., 2019). This
suggest that reorganization during aging may involve a shift from
connections between higher order networks to connections be-
tween higher order and primary sensory networks. Moreover, these
results suggest that just as during development, the aging brain
seems to undergo an inverse complex reorganization process of
networks at rest. Together, these studies show age-related reorga-
nization of large-scale functional brain networks across a common
pattern of reduced within-network and increased between network
connectivity with age. This suggests a progression toward a less
segregated and more integrated functional architecture as the brain
ages. Consequently, this suggests a break in the balance between

integration within the modules and segregation between them.



2 2 JOURNAL OF

EDDE ET AL.

Neuroscience Research

Using correlational analyses based on parcellation approach,
Ferreira and colleagues (2016) characterized age-related changes of
whole-brain FC trajectory from young to older adults (19-75 years).
They showed not only a decrease in positive FC within network
regions, mainly regions belonging to the DMN as most reported in
previous studies, but also increases in between network positive
correlations (included VIS network) and losses of anticorrelations
(mainly between the DMN and the attentional networks; Ferreira
et al.,, 2016). A more recent study employing principal component
analysis to identify 10 functional brain networks, Zhai and Li (2019)
replicated previous findings with decreased within-networks and
increased between network connectivity in 496 participants aged
between 6 and 85 years. They revealed between network quadratic
trajectories between DMN-CEN, SMN-AUD, SMN-VIS, and DMN-
DAN. Indeed, on the whole, these connections showed early age-re-
lated increases (<50 years) and late age-related decreases (>50 years)
(inverted U-shape graph). Positive quadratic changes with age were
mainly found in quite a small number of within network connections
in subcortical areas as well as between network connections among
VIS-DMN, subcortical-FP, and AUD-subcortical. These connections
showed early decreases (<50 years) and late increases (>50 years)
(U-shaped) from infancy to older adults. In addition, authors have
also found that a decrease in within network connectivity with age
is more important, suggesting more rapidly decreases than between
network connectivity with age and therefore supporting the idea of
an overall less segregated global brain network and breaking balance
between the two segregation and integration processes (Zhai &
Li, 2019). Overall, FC studies provide evidence for age-2014 related
FC changes in networks that would be associated not only with a de-
crease, but also with anincrease in FC in the elderly. Therefore, aging
would be related to a reduction in the specificity of resting-state
networks—less modular and distinct—which would result in an in-
creased between-connectivity diffusely distributed in the brain and,
so, less efficiency (Figures 3 and 4).

To conclude, there are a number of technical concerns that need
to be taken into consideration for interpretation of resting-state
fMRI. For instance, as evoked in the introduction, choice of an atlas
or a parcellation constitutes a factor affecting quantitative mea-
sures of FC (Arslan et al., 2018). In their review, Gao, Alcauter, Elton,
et al. (2015) employed adult templates to define ICA components in
infancy, whereas others used group-level clustering to design a pop-
ulation-specific template (Thomason et al., 2013, 2014). However,
the localization of the functional regions in the brain becomes dif-
ferent with age. A recent aging study showed that the difference in
connectivity between the groups was amplified using the same ROIs
definition (ICA) for young (27 years) and old participants (74 years),
while the definition of specific ROls for each group led to a higher
level of FC in elderly subjects (Goldstone et al., 2016). Similarly, the
DMN FC differs according to considered subnetworks. Therefore,
optimization and standardization of the processing pipeline are crit-
ical to allow reliable comparisons across study populations and im-
prove our understanding of the organization of the functional brain

networks across life span. In addition, because FC results which can

be positive or negative, the description of only increases and de-
creases in FC can lead to misleading interpretations. This emphasizes
the need to clearly specify the directionality of changes, for instance
increase can refer to strengthening of positive correlation or a loss
of anticorrelation. Moreover, the separate analysis of positive and
negative connections could be informative (Varangis et al., 2019).
However, the question regarding negative correlations, although
related to neural activity (Gopinath, Krishnamurthy, Cabanban, &
Crosson, 2015; Keller et al., 2013), remains poorly understood and
therefore excluded from most studies. Finally, little is known about
sex differences in FC. For most of the studies included, age has been
considered as a covariate and has not been clearly explored (which
is also the case for education level and other sociodemographic
variables). The sex-related effect on FC has been explored recently:
some studies reported that both within- and between network con-
nectivity varied with sex at gestational age (Gao, Alcauter, Elton,
et al., 2015; Wheelock et al., 2019), during adolescence (Gozdas,
Holland, & Altaye, 2019; Riley et al., 2018), adulthood (Scheinost
et al,, 2015), and in older adults (Goldstone et al., 2016; Jamadar
et al., 2019). These results suggest that differences between males
and females in functional brain networks could start before birth
and continue across the life span. However, results were inconsis-
tent and emphasize the need to conduct future studies characteriz-

ing such network-specific trajectories in males and females.

7 | CONCLUSION

In conclusion, before birth, the high increase in short-range con-
nections, in conjunction to progressive but continuous growth of
long-range connections, leads to the emergence of proto-networks
organization at birth which strengthens during the first years of life to
achieve an adult-like brain at the age of 2. During infancy, functional
brain networks undergo a progressive change from isolated local
regions to distributed networks until adolescence. These changes
follow a primary-to-higher order networks developmental sequence
characterized by different functional brain connectivity trajectories
in relation to emerging cognitive functions. Large-scale network or-
ganization appears to stabilize during adolescence in conjunction to
progressive and subtle refinement of brain organization (reorganiza-
tion) by continuous growth and integration of information across a
widely distributed circuitry during the transition to young adulthood
(around 20 years), to ultimately enhance the ability for different net-
works to collaborate. FC within- and between networks continue
to increase from adolescence to young adulthood (around 20 years),
reaching a stable level during adulthood (around 30-40 years). This
stable period from young to middle-aged adults consists of a reor-
ganization of between network interactions, mainly involving higher
order networks. After this stability period, FC declines from middle-
aged adulthood (>40 years) and thereafter. This decline is primar-
ily driven by reductions in within network connectivity starting at
middle age (around 40 years) followed by a more pronounced in-

crease in between network connectivity in older adults (>60 years).
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Therefore, middle-age adulthood corresponds to a transitioning pe-
riod with inflection of the FC network trajectories, concomitant with
the decline in cognitive functions observed at the same period of
time. Thereby, the disruption of resting-state networks could play a
role in deterioration of cognitive abilities throughout aging. During
older adulthood (>60 years), there is a complex reorganization of be-
tween network connections involving a shift from connections be-
tween higher order networks to connections between higher order
and primary sensory networks. FC is reduced within-networks and
increased between-networks in higher order networks while in-
creased within primary sensory networks in older adults, leading to
a break in the balance between integration (within the modules) and
segregation (between them) and therefore, less efficiency of brain
networks. Just as during development, the brain seems to undergo
a complex reorganization process of resting-state networks dur-
ing aging. This reorganization looks like an inverse sequence of the
early development processes (see Figure 4 for summary). Overall,
these changes during aging can be linked to multiple sources. Among
these, structural connectivity changes have been particularly im-
plicated. We focused this review on FC changes without consider-
ing any structural analysis, which could provide a broader view of
age-related brain changes by considering structural differences and
their associations with functional results. Indeed, this idea of inver-
sion of developmental processes during aging is in accordance with
the developmental models of neuroanatomy which propose that
the last brain regions to develop are also the first to deteriorate. In
addition, some studies reported age-dependent changes in the re-
lationship between FC and structural connectivity in from fetal to
adulthood (Grayson & Fair, 2017; Keunen et al., 2017) as well as in
aging (Damoiseaux, 2017; Fjell et al., 2017). Although current studies
do not allow any causal inference between changes of the struc-
ture-function relationship, studies including this relationship expand
our understanding of the physiological mechanisms underlying age-
related changes. Further work will be needed to clarify the role of

brain structure in the establishment and regulation of FC at rest.
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Glossary

Amplitude of Low Frequency Fluctuations (ALFF), ALFF provides
a measure of the local amplitude of the BOLD signal evolution for
a specific frequency range (0.01-0.08 Hz) for each voxel.; Blood
oxygen level dependent (BOLD), MRI-related signal that measures
the hemodynamic response process in the brain. It is based on the
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different magnetic susceptibility between oxygenated and deoxy-
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genated blood.; Centrality, Describes the number of short-range
connections for each node. Nodes with higher centrality contribute
more to the overall efficiency of the network.; Clustering, Describes
the level of local neighborhood clustering which reflect the level of
local connectedness of a network; Default mode network (DMN),
Set of brain regions active during resting-state and deactivate when
subject is engaged in goal-directed tasks.; Dynamic causal modeling
(DCM), Technique which used in conjunction with Bayesian tech-
niques. Estimates states and parameters of effective connectivity
based on data underlying biological or physical quantities.; Effective
connectivity, Estimation of the causal connectivity and its direc-
tionality between functional brain regions. It measures information
flow.; Eigenvector centrality mapping (ECM), A measure to spatially
characterize connectivity in functional brain imaging by attribut-
ing network properties to voxels.; Fisher's Z-transformed correla-
tion coefficient, Pearson correlation coefficient is Z-transformed
to generate normalized correlation matrices for each participant (z-
score).; Functional connectivity, Reflects any pattern of connectiv-
ity obtained with functional data. It refers to the measurement of
any functional connection between regions as the temporal coher-
ence between time series. Mostly, study used Pearson Correlation
Coefficient.; Functional connectivity strength, Represents the
mean value of weights of all functional connections linking to the
node.; Functional integration process, Coordinated activity of dif-
ferent brain network.; Functional segregation process, Existence of
specialized neurons and brain units that selectively respond to spe-
cific stimuli.; Global efficiency, Measure of information propagating
in the whole network, indicating to what extent connections are
being integrated into a whole brain-wide network.; Graph-theory, A
model of a complex system defined by a set of nodes and the edges
between them.; Hub, A region playing a central role in the organiza-
tion of a network and involved in the regulation of the information
flow in the brain.; Independent Component Analysis (ICA), A data-
driven method used to identify spatiotemporal independent pro-
cesses in the data. Spatial-ICA separates distinct components from
each other that are spatially independent, whereas temporal-ICA
separates distinct components that are temporally independent of
each other.; Local efficiency, Measure of information transfer in the
closet neighborhood of each node, indicating to what extent con-
nections are being segregated into subnetworks.; Multi-Echo fMRI,
MRI sequence collecting separate volumes at different echo times
during one radio-frequency pulse. The combination of the images al-
lows a suppression of non-BOLD signals (breathing, cardiac pulse,...),
which is an issue during resting-state fMRI signal preprocessing.;
Modularity, A global measure of how a network can be decomposed
into a set of sparsely interconnected but densely intraconnected
modules. It reflects the existence of subnetworks within the full net-
work.; Network, Represent interacting brain regions characterized
by activity highly correlated between nodes belonging to a same
network and distinct from other networks in the brain.; Node de-
gree, Describes the number of connections of a node. It helps iden-
tify the highly connected nodes within the network.; Parcellation,
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Structured representation of the brain in parcels. The definition of
parcellations can be derived from anatomical or functional data,;
Pearson correlation coefficient, Measure of the linear relationship
between two variables. It is used between time series from different
regions to estimate functional connectivity.; Regional Homogeneity
(ReHo), The ReHo approach, based on the assumption that intrinsic
brain activity manifests itself by groups of voxels rather than by sin-
gle voxels, makes it possible to assess the consistency between the
time series of a given voxel and his closest neighbors.; Resting-state
functional connectivity (RSFC), Measure of the functional connec-
tivity estimated as the temporal synchrony between spontaneous
temporal fluctuations at different brain regions.; Resting-state net-
work (RSN) or Intrinsic connectivity Network (ICN), Functional brain
networks most commonly estimated from rs-fMRI data. Functional
networks in the brain that are most commonly estimated from rs-
fMRI data.; Small-world, This small-world configuration has been
defined as the more efficient configuration; it is characterized by a
high network efficiency at a low cost (high clustering and modular-
ity), suggesting an economic configuration with an optimal balance
between functional brain integration and segregation which is criti-
cal for efficient information flow.; Topology, Properties of a network
obtained considering the connectivity between nodes regardless of
their physical or anatomical localization..
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