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Purpose: To propose a framework for synergistic reconstruction of PET‐MR and 
multi‐contrast MR data to improve the image quality obtained from noisy PET data 
and from undersampled MR data.
Theory and Methods: Weighted quadratic priors were devised to preserve common 
boundaries between PET‐MR images while reducing noise, PET Gibbs ringing, and 
MR undersampling artifacts. These priors are iteratively reweighted using normal-
ized multi‐modal Gaussian similarity kernels. Synergistic PET‐MR reconstructions 
were built on the PET maximum a posteriori expectation maximization algorithm 
and the MR regularized sensitivity encoding method. The proposed approach was 
compared to conventional methods, total variation, and prior‐image weighted quad-
ratic regularization methods. Comparisons were performed on a simulated [18F]
fluorodeoxyglucose‐PET and T1/T2‐weighted MR brain phantom, 2 in vivo T1/T2‐
weighted MR brain datasets, and an in vivo [18F]fluorodeoxyglucose‐PET and fluid‐
attenuated inversion recovery/T1‐weighted MR brain dataset.
Results: Simulations showed that synergistic reconstructions achieve the lowest 
quantification errors for all image modalities compared to conventional, total varia-
tion, and weighted quadratic methods. Whereas total variation regularization pre-
served modality‐unique features, this method failed to recover PET details and was 
not able to reduce MR artifacts compared to our proposed method. For in vivo MR 
data, our method maintained similar image quality for 3× and 14× accelerated data. 
Reconstruction of the PET‐MR dataset also demonstrated improved performance of 
our method compared to the conventional independent methods in terms of reduced 
Gibbs and undersampling artifacts.
Conclusion: The proposed methodology offers a robust multi‐modal synergistic image 
reconstruction framework that can be readily built on existing established algorithms.
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1  |   INTRODUCTION

PET and MRI systems have opened the way for synergistic 
reconstruction of PET‐MR data to improve image quality,1-3 
particularly for low‐count PET data and/or highly undersam-
pled MRI data.

It is known that PET reconstruction using the conventional 
maximum‐likelihood expectation maximization (MLEM) al-
gorithm exhibits noise and loss of details due to noise in the 
data and the limited detector resolution. Hence, coregistered 
high‐resolution MR images have been used to guide the re-
construction of PET data using maximum a posteriori (MAP) 
expectation maximization (MAPEM) algorithms. Quadratic 
(Tikhonov) and total variation (TV) priors are among the 
most commonly used MAP priors.4,5 However, mismatches 
between PET and MR images may introduce false features or 
suppress true ones in the reconstructed images. Nonetheless, 
the complementary information of multi‐contrast MR images 
available in simultaneous PET‐MR scanners can be employed 
to cope with these mismatches.6

On the other hand, MR imaging often requires long acquisi-
tions, particularly for multi‐parametric imaging. Conventional 
fast acquisitions include partial Fourier7 and parallel MRI 
such as sensitivity encoding,8 in which the acquisition is ac-
celerated by undersampling the k‐space data. At high acceler-
ation factors, the conventional reconstructions show extensive 
noise amplification and/or aliasing artifacts. Hence, similar to 
PET, different regularization methods have been investigated 
for incorporation of prior knowledge into MR image recon-
struction,9,10 among which compressed sensing and sparsity 
regularization are the most successful ones.11-13 In multi‐con-
trast and longitudinal MR scans, existing MR images of the 
same or different contrasts can be also used to form additional 
prior knowledge about the MR image being reconstructed.14-19 
Similar to MR‐guided PET reconstruction, prior image‐
guided MR reconstruction is also subject to the mismatches 
between MR images, hence the joint or synergistic reconstruc-
tion of multi‐contrast undersampled MR images have been 
explored.20-22 Bilgic et al.23 proposed reconstruction of MR 
images using joint image gradients of multi‐contrast images. 
Weizman et al.21 studied separate TV priors defined on each 
MR image contrast and an additional reweighted L1 norm prior 
defined on the difference of the MR images.

Synergistic PET and MR image reconstruction has also 
been recently explored to exploit the complementary infor-
mation of the PET‐MR images. The benefits of such recon-
structions are challenged by the need for the development 
of 1) a model‐based joint prior that favors common features 
between PET and multi‐contrast MR images, irrespective 
of their relative signal intensities and their relative contrast 
orientations, while preserving modality unique features; 
and 2) a robust and stable optimization algorithm with 
preferably few hyperparameters. Ehrhardt et al.1 reported 

the first attempt in synergistic PET‐MR image recon-
struction based on the parallelism of PET‐MR level sets, 
whereas Knoll et al.2 proposed a total generalized variation 
(TGV) regularization based on the nuclear norm. Despite 
promising results, their methods depend on relative signal 
intensities. In Ref. 3, we recently proposed a generalized 
TV prior with an alternating scaling scheme to handle the 
relative signal intensity issue. Simulation results showed 
that our algorithm can outperform the PET‐MR level sets 
and joint TV priors; however, the proposed scaling scheme 
was designed to match the magnitude of PET and MR 
image gradients using a single global scale factor. Hence, 
this algorithm is not efficient and robust for all regions in 
PET‐MR images with different gradient magnitudes. In ad-
dition, as in previous work, a relatively complex optimiza-
tion algorithm was chosen.

In this study, we propose a framework for synergistic 
PET and multi‐contrast MR image reconstruction. In this 
framework, the PET and MR images are reconstructed 
using well‐established EM and iterative SENSE recon-
struction algorithms and are regularized using adaptively 
weighted multi‐modal quadratic priors. These priors (1) are 
able to preserve modality unique features through calcu-
lating weighting factors from all image modalities, (2) are 
independent of the relative signal intensities and contrast 
orientations of MR or PET‐MR images, and (3) easily ac-
commodate synergistic reconstruction of multiple PET or 
MR datasets. Synergistic reconstruction of multiple data-
sets has also been recently reported in Ref. 24. The pro-
posed prior is similar to the Bowsher prior but different in 
that similarity coefficients are progressively derived from 
all multi‐modal images rather than being precalculated.6 In 
this study, we present our results using realistic 3D simu-
lations, in vivo undersampled 3D MR data, and an in vivo 
PET‐MR dataset for the different guided and synergistic 
reconstruction methods.

2  |   THEORY

2.1  |  Synergistic reconstruction of PET and 
MR data
The synergistic reconstruction of the PET image, u∈ℝ

Nu and 
MR images, v(k) ∈ℂ

Nk, k=1,… ,V , of different contrasts can 
be achieved by the following optimization3:
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where the 3 terms of the objective function correspond to 
the PET data fidelity, MR data fidelity, and joint modality 
prior. y∈ℤ

Mu is the PET sinogram data; P∈ℝ
Mu×Nu is the 

PET system matrix (composed of the geometric transition 
matrix, the scanner’s point spread function, and attenuation 
and normalization factors); r̄ ∈ℝ

Mu is an estimate of the 
mean PET background coincidences (randoms and scatters); 
and Nu and Mu are the number of image voxels and sinogram 
bins. s

(k) ∈ℂ
MkL is the k‐space data for the kth MR image 

contrast; E
(k) ∈ℂ

MkL×Nk is its corresponding MR encoding 
matrix (composed of a discrete Fourier transform, k‐space 
undersampling matrix, and coil sensitivity profiles). Mk, L, 
and Nk are the number of k‐space samples, coils, and voxels 
for the kth image contrast, respectively. w(k)

li
 is an element of 

a W(k) ∈ℝ
MkL×MkL weighting matrix obtained from the inver-

sion of the noise covariance matrix.25 In this study, the joint 
prior R was defined as the sum of mutually weighted qua-
dratic priors as follows:

where � is a regularization parameter, and �jb and �jb are co-
efficients used to modulate the intensity differences between 
voxel j and b based on their Euclidean proximity and inten-
sity similarity in a neighborhood j, respectively. The prox-
imity coefficients were defined as:

where 
{

j(i)
}
 and 

{
b(i)

}
 are the Cartesian coordinates of the j

th and bth voxel. In the proposed prior, the similarity coeffi-
cients are alternatingly calculated from both PET‐MR images 
using the following joint coefficients (6):

where û and v̂
(k) are the current estimates of the PET and 

MR images, obtained iteratively in the case of synergistic 
reconstruction, or are prior images in the case of guided 
PET or MR reconstruction. These coefficients are com-
posed of the product of Gaussian similarity kernels cal-
culated between voxel j and b in a neighbourhood j for 
each image modality. The role of �jb is to assign a lower 
penalty on the local differences that are associated with a 
boundary identified uniquely from the PET image or MR 
image or mutually from all PET and MR images. In PET 
unique boundaries, the MR‐derived Gaussian kernels in �jb 
are uniform, whereas in shared boundaries they have the 
same structural similarity irrespective of contrast orienta-
tion and relative signal intensity. Therefore, the product of 
the kernels will preserve the modality unique boundaries 
and encourage the formation of shared ones.

Because PET and MR images may all have different ma-
trix and voxel sizes, the �jb coefficients in Equation (4) must 
be uniquely calculated for each modality. Hence, registration 
and resampling operators, Φ

x→y
, need to be defined to spa-

tially map image modality, x, to a given image, y (see step 3 
in the proposed algorithm for more details). In this study, we 
followed an alternating optimization of Equation (1). As sum-
marized in the proposed algorithm, the optimization consists 
of 3 main steps: (1) MAPEM image reconstruction of PET 
data using a weighted quadratic prior, employing De Pierro’s 
decoupling rule for regularization26,27 with Piter iterations; (2) 
SENSE MR image reconstruction using a weighted quadratic 
prior and the conjugate gradient (CG) algorithm28 with Miter 
iterations; and (3) calculation of the similarity coefficients 
used during PET and MR reconstruction.

In this algorithm, q is PET sensitivity image; D is a de-
rivative matrix for calculation of local differences between 
image voxels; and � and � are diagonal weighting matrices 
with diagonal elements calculated by Equations (3) through 
(4), respectively. In this study, the proposed synergistic algo-
rithm was employed for different synergistic PET‐MR and 
MR reconstructions in comparison with a number of sepa-
rate reconstruction methods, as summarized in Supporting 
Information Table S1.
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phantoms were set to 230 × 230 × 254 and 1.043 × 1.043 × 
1.015 mm3. For the PET image, a gray‐to‐white matter activity 
ratio of 4:1 was considered, whereas the MR intensity ratios 
were obtained from the BrainWeb simulator. Unique lesions 
were introduced in the PET and T1‐weighted MR images with 
a volume of 0.76 mL (5.6‐mm diameter) and 0.87 mL (7.6‐
mm diameter), respectively (see Figures 1–2 in the Results 
section for the location of the lesions). For the FDG‐PET and 
T1‐MR images, the lesion‐to‐white matter activity/intensity 
ratios were set to 6:1 and 2:1, respectively. PET simulations 

Proposed algorithm: synergistic reconstruction of PET and MR data

3  |   METHODS

3.1  |  Simulated and real datasets

3.1.1  |  PET‐MR simulation
The BrainWeb phantom29 was used to simulate an activity 
distribution of [18F]fluorodeoxyglucose (FDG) in the brain, 
along with T1‐ and T2‐weighted MR images. The matrix and 
voxel sizes of the PET phantom were set to 344 × 344 × 127 
and 2.086 × 2.086 × 2.03 mm3, whereas those of the MR 
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were performed for the Siemens Biograph mMR scanner 
(Siemens Healthcare, Malvern, PA), including attenuation, 
normalization factors, 10% randoms, and 30% scatter coinci-
dences. Poisson noise realizations with a total of 90 million 
counts were generated for the PET phantom. Resolution deg-
radation was modeled in image space with a 4.5‐mm Gaussian 
kernel.30 MR simulations were performed for an MR scanner 
with a 5‐channel coil, 100‐mm coil radius, and 150‐mm coil 

distance from the center. Coil sensitivity maps were simu-
lated based on the Biot–Savart law.31 For undersampled MR 
reconstructions, the k‐spaces of the T1 and T2 images were 
contaminated with Gaussian noise and undersampled using 
Cartesian (undersampling factor of 6) and radial trajectories 
(20 radial spokes, undersampling factor of ~10), respectively. 
Supporting Information Table S2 summarizes the MR under-
sampling used in all experiments in this study.

F I G U R E  1   Reconstruction results for the simulated T1, T2, and PET data showing T1 unique lesion. Captions categorize the reconstructions 
in different groups. (A,H) SENSE reconstruction of fully sampled data; (C,J) SENSE reconstruction of undersampled data; (C,K) TV‐SENSE 
reconstruction of undersampled data; (D,L) wQ‐SENSE reconstruction of undersampled T1 and T2 data weighted using fully sampled T2 and T1 
images, respectively; (E,M) synergistic reconstruction of undersampled T1 and T2 data; (F,U) synergistic reconstruction of undersampled T1 and 
PET data; (N,T) synergistic reconstruction of undersampled T2 and PET data; and (G,O,V) synergistic reconstruction of undersampled T1, T2, and 
PET data. (P) PET ground truth, (Q) MLEM, (R) TV‐MAPEM, and (S) wQ‐MAPEM weighted using fully sampled T1 image. Note that the PET 
images have been resampled to T1 MR resolution. MLEM, maximum‐likelihood expectation maximization; TV‐MAPEM, total variation‐maximum 
a posteriori (MAP) expectation maximization; wQ, weighted quadratic. 

F I G U R E  2   Same as Figure 1, but for a sagittal slice showing T1 and PET unique lesions. 
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3.1.2  |  MRI in vivo dataset
Two healthy volunteers underwent undersampled T1‐ and 
T2‐weighted 3D whole brain MR scans on a 1.5T Siemens 
MR scanner (Siemens Healthcare) using a prototype variable 
density Cartesian acquisition with spiral profile order (VD-
CASPER) with undersampling factors (R) of 3, 9, and 14 (see 
Ref. 32 for more detail on the sampling). The k‐space data 
were acquired using a 16‐channel head coil. T1 images were 
acquired using 3D T1‐MPRAGE with the following param-
eters: TR: 1700 ms, TE: 2.5 ms, TI: 900 ms, echo spacing: 
6.24 ms, flip angle: 9 degrees. Acquisition were performed 
fully sampled and with R = 3, 9, 14, resulting in acquisition 
times of 377 s, 125 s, and 83 s, respectively. T2 images were 
acquired using a 3D balanced SSFP sequence with the fol-
lowing parameters: TR: 5000 ms, TE: 2.57 ms, flip angle: 9 
degrees. The voxel size of the T1 and T2 images of the first 
volunteer was set to 1.4 × 1.4 × 1.4 mm3, whereas for the 
second volunteer it was set to 1.2 × 1.2 × 1.2 mm3.

3.1.3  |  PET‐MRI in vivo dataset
A patient with dementia underwent a brain PET‐MR scan 
on the Siemens mMR scanner and the following datasets 
were acquired: (1) a 30‐min PET scan with an injected 
activity of 212.82 MBq of [18F]FDG; (2) a Dixon and a 
UTE MR sequence to generate a 4‐tissue class (air, soft 
tissue, fat, and bone) attenuation map for PET attenuation 
correction; (3) an MPRAGE sequence with the following 
parameters: 5 channels, TR: 1700 ms, TE: 2.63 ms, TI: 
900 ms, echo spacing: 6.24 ms, flip angle: 9 degrees, ac-
quisition times: 142 s; and (4) a 2×‐accelerated fluid‐at-
tenuated inversion recovery (FLAIR) MR sequence with 
the following parameters: 14 channels, TR: 5000 ms, TE: 
395 ms, T1: 1800 ms, echo spacing: 6.24 ms, flip angle: 
120 degrees, acquisition times: 397 s. For PET reconstruc-
tion, all correction sinograms were generated using e7 
tools (Siemens offline reconstruction software; Siemens 
Healthcare), and images were reconstructed with PSF 
modeling using 4.5‐mm Gaussian kernels30 and the scan-
ner’s default matrix size, as used in our simulations. The 
k‐space of the T1 dataset was retrospectively undersam-
pled using Cartesian trajectories in the phase‐ and slice‐
encoding directions, each with a factor of 3, leading to a 
total acceleration factor R = 9. The k‐space of the FLAIR 
dataset was further retrospectively undersampled in the 
slice‐encoding direction by a factor of 3, leading to R = 
6. The T1 and FLAIR images were reconstructed in their 
native matrix and voxel sizes of 512 × 244 × 244, 1.05 × 
1.05 × 1.1 mm3; and 512 × 256 × 160, 0.48 × 0.48 × 1.0 
mm3, respectively. Supporting Information Table S2 sum-
marizes this experiment.

3.2  |  Reconstruction methods
The images of both the simulation and in vivo data were 
reconstructed as complex‐valued; however, the images pre-
sented in the Results section are magnitude images. Coil sen-
sitivity maps were calculated by dividing the MR image from 
each coil by the square root of the sum of squares of all the 
images obtained from all the coils. In this study, the neigh-
borhood size, j, of the quadratic priors in Equation (2) was 
set to 5 × 5 × 5 for the simulations, whereas for the in vivo 
datasets it was set to 3 × 3 × 3 to reduce the computational 
burden of our reconstructions. The � and � parameters were 
set experimentally for all reconstruction setups. To facilitate 
and standardize the selection of � for different images and 
different datasets, we normalized each image to [0,1] prior to 
calculation of the Gaussian kernels. Supporting Information 
Table S3 provides all parameters chosen for the reconstruc-
tion of the simulated and real datasets. The PET forward and 
back projections were implemented in C++ with GPU ac-
celeration. MR reconstructions were performed in MatLab 
(MathWorks, Inc., Natick, MA).

3.3  |  Evaluation metrics
For the simulations, the performance of different reconstruc-
tion methods was quantitatively evaluated compared to a 
reference image (for PET, the ground truth; for MR, a re-
construction from fully sampled data) using (1) a voxel‐level 
error, defined in Equation (5); (2) a region‐level error, calcu-
lated from the mean of the voxel‐level errors in a region of 
interest (ROI); and (3) the contrast‐to‐noise ratio (CNR) for 
lesions, defined in Equation (6),

where xj and x
ref

j
 are the jth voxel of a given (complex) 

image and its corresponding reference image, respectively. 
ĀL and ĀB are the means of the PET activity or MRI inten-
sity in a given lesion and a background region, and SD

B
 is 

the mean SD of activity/intensity in a background region. 
The background region was defined using 15 ROIs (~10‐
mm diameter) in different regions of the brain (as shown in 
Supporting Information Figure S1). ROIs of the lesions were 
defined by thresholding the simulated PET‐MR images at a 
threshold of 60% of the maximum lesion value. The mean 
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(M) and SD of voxel‐level errors in gray and white matter 
of each reconstruction were summarized by a root sum of 
squared (RSS) errors as follows:

For in vivo data, the CNR between the gray and white 
matter was calculated to evaluate the performance of the al-
gorithms in the absence of a reference image.

4  |   RESULTS

4.1  |  Simulations
In Figures  1 and 2, the reconstruction results of the simu-
lated brain phantom are shown. For visualization, PET images 
were resampled into MR resolution. Figures 1A through 1G 
show (A) fully sampled SENSE; (B) undersampled SENSE; 
(C) undersampled SENSE with TV regularization; (D) under-
sampled SENSE with quadratic regularization weighted using 
fully sampled T2 image; (E) synergistic reconstruction of un-
dersampled T1 and T2 images; (F) synergistic reconstruction of 
undersampled T1 and PET; and (G) synergistic reconstruction 
of undersampled T1, T2, and PET images. Figures 1H through 
1O show the same results for the T2 image.

Figures 1P through 1V shows (P) PET ground truth; (Q) 
MLEM reconstruction; (R) MAPEM reconstruction with TV 
regularization; (S) MAPEM with quadratic regularization 

weighted using fully sampled T1 image; (T) synergistic re-
construction of undersampled T2 and PET images; (U) syn-
ergistic reconstruction of undersampled T1 and PET images; 
and (V) synergistic reconstruction of undersampled T1, T2, 
and PET images. Figure 2 show the same results for a sagittal 
slice containing mismatched PET and T1 lesions. Supporting 
Information Figures S1 through S5 show the same results 
with error maps and zoomed‐in subfigures over mismatches.

The results show that SENSE reconstructions lead to noisy 
estimates, particularly for the T1 image with 6‐fold Cartesian 
undersampling. TV‐SENSE reconstructions reduce noise and 
aliasing artifacts specifically in the T2 image for which the 
radial undersampling results in incoherent artifacts suitable 
for sparsity regularization. However, the reconstructions do 
not recover all the details compared to wQ‐SENSE, which 
is guided by an artifact‐free MR image. In wQ‐SENSE re-
constructions, there are some residual folding artifacts and 
suppressed/deformed edges, as shown in the zoomed‐in 
subfigures.

The PET reconstruction results in Figures 1 and 2 show 
that the MLEM reconstructions suffer from noise and loss 
of details, whereas TV‐MAPEM notably reduces the noise 
but induces blurring. The wQ‐MAPEM method improves 
recovery of boundaries but at the cost of inducing tumor‐
like artifacts for the MR unique lesion and suppressing 
and deforming the PET unique lesion (see also Supporting 
Information Figures S2 through S5). The synergistic recon-
struction of the PET and T1 images induces similar artifacts 

(7)RSS=
√

M2+SD2.

F I G U R E  3   Mean (horizontal bold lines) and SD (vertical bars) of voxel‐wise errors in gray and white matter for different reconstruction 
methods together with their root sum of squared errors (numbers shown above each bar). 
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in the PET image, as shown in Figures 1 through 2 (S). The 
synergistic reconstruction of all datasets together can mit-
igate these artifacts; however, as shown in Figure 1V, this 
algorithm has introduced a false edge through preserving 
noise at the edge that corresponds to the MR unique lesion. 
Despite this, the proposed method can preserve unique le-
sions. However, the results in Figures 2T through 2V show 
that the PET lesion’s size has slightly shrunk by this method 
compared to the MLEM and TV‐MAPEM methods.

Figure 3 compares the reconstruction methods in terms of 
mean and SD of voxel‐level errors in gray and white matter 
for the PET, T1, and T2 images. The numbers above each bar 
in the figure report RSS errors, as defined in Equation 13. 
The results show that by moving from conventional recon-
struction methods to synergistic ones, the mean and SD of the 
errors are reduced in both the gray and white matter. The con-
ventional MLEM and SENSE methods result in an average 
RSS error of 13.4% in the gray matter and 16.0% in the white 
matter, whereas the proposed synergistic reconstructions of 
PET and T1 and T2 MR (SynPETMR‐T1‐T2) methods reduce 
these errors by more than half. The results show that PET and 
MR reconstructions using weighted quadratic regularization 
achieve a better performance than those using TV regular-
ization; however, they are outperformed by the synergistic 
methods.

Figure 4 shows CNR performance of the reconstructions 
for PET and T1 lesions. As shown, the MLEM and SENSE 
reconstructions result in low CNRs because these methods in-
crease background noise, whereas the TV‐MAPEM and TV‐
SENSE methods result in relatively high CNRs because the 
edge‐preserving TV regularization suppresses background 
noise and increases lesion contrast. The wQ‐MAPEM and 
wQ‐SENSE methods achieve lower CNR compared to their 
TV counterparts because they tend to suppress unique lesions 
due to mismatches between reconstructed images and their 
prior images used for guided reconstructions. Synergistic re-
construction results in a comparable and high CNR because 
they tend to reduce noise and preserve modality‐unique 
lesions.

For simulations, the reconstruction methods were per-
formed with a large number of updates (up to 1200 updates) 
to ensure their convergence, as summarized in Supporting 
Information Table S3. In Supporting Information Figure S7, 

F I G U R E  5   Synergistic reconstruction of the prospectively 
undersampled T1 (left) and T2 (right) datasets for a healthy volunteer. 
Acceleration factor and resulting acquisition time (in minutes and 
seconds) of each scan are shown. 

F I G U R E  4   CNR results for the separate and synergistic MR and PET‐MR reconstructions. CNR, contrast‐to‐noise ratio.
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the convergence of the reconstructions is shown in terms of 
normalized root mean square error in the whole brain. As 
expected, MLEM and undersampled SENSE reconstructions 
give rise to noisy solutions at high iteration numbers; there-
fore, earlier termination is required. The results show that 
most of the algorithms have converged to a fixed‐point solu-
tion, particularly for the PET and T2 images. Moreover, the 
synergistically reconstructed data result in the lowest normal-
ized root mean square error in the whole brain.

4.2  |  In vivo MRI data
Figures 5 through 6 compare the synergistic image recon-
struction of 2 in vivo T1/T2 datasets with conventional zero‐
filling, SENSE, and separate TV‐SENSE reconstruction 
methods for acceleration factors of 3 and 14. Supporting 
Information Figures S7 and S8 compare the results for 
all acceleration factors (including 9×) for sagittal slices. 
Zero‐filling images were obtained by filling the unmeas-
ured k‐space data with zeros and were reconstructed using 
the conventional sum‐of‐squares method. Note that in the 
absence of a fully sampled MR dataset, the wQ‐SENSE F I G U R E  6   Zoomed‐in of Figure 5. 

F I G U R E  7   Same as Figure 5 for another healthy volunteer. 
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method was not considered in this experiment. In the VD-
CASPER sequence used for this dataset, the sampling of 
k‐space is reduced from the center toward the periphery of 
k‐space in a spiral and random fashion. Hence, at higher ac-
celerations the reconstructed images suffered from blurring 

as well as aliasing artifacts. At 3× acceleration, the TV‐
SENSE and synergistic (i.e., SynMR) methods show a 
fairly similar performance, whereas the zero‐filling and 
SENSE reconstructions show blurring and noise. At higher 
acceleration, the TV‐SENSE reconstructions show blurring 
and residual artifacts, whereas the synergistic method tends 
to keep the image quality comparable to the 3×‐accelerated 
images for both the T1 and T2 datasets. The arrows point 
to the regions with notable differences between the recon-
struction methods. Supporting Information Figure S9 com-
pares the CNR performance of the reconstructions between 
gray and white matter in T1 and T2 images for different 
acceleration factors. As shown, at each acceleration factor 
the proposed method achieves the highest CNR thanks to 
a higher contrast between the gray and white matter and 
lower background variation.

4.3  |  In vivo PET‐MR data
Figure 9 and Supporting Information Figure S10 show the 
conventional and synergistic reconstruction results of the 
FDG‐PET/T1/FLAIR dataset. In this experiment, the ref-
erence MR images included the SENSE reconstruction of 
fully sampled T1 data and the 2×‐accelerated FLAIR data-
sets. For PET, there was no reference image. As shown, the 
MLEM reconstruction suffers from noise and Gibbs ringing 
artifacts at the edges (see arrow in Figure 10). TV reconstruc-
tions notably reduce noise and aliasing artifacts apparent in 
undersampled SENSE reconstructions but at the expense of 

F I G U R E  9   Synergistic PET‐MR image reconstruction of the PET‐MR dataset in comparison with the conventional and separate 
reconstruction methods. 

F I G U R E  8   Zoomed‐in of Figure 7. 
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resolution and detail loss. The wQ‐MAPEM and wQ‐SENSE 
reconstructions guided by reference T1 and FLAIR images 
improve all modalities by reducing noise and Gibbs/aliasing 
artifacts and can recover details. Synergistic reconstruction 
of PET‐MR data show that these reconstructions perform 
fairly comparably to the wQ‐MAPEM and wQ‐SENSE re-
constructions while only using undersampled data (9× for T1 
and 6× for FLAIR). In addition, as shown by the arrows in  
Figure 7 and Supporting Information Figure S11, wQ‐SENSE 
has introduced pseudo structures in the FLAIR image due to 
mismatches between the T1 and FLAIR images, whereas they 
are not present in our synergistically reconstructed FLAIR 
image.

Supporting Information Figure S12 compares CNR be-
tween gray and white matter for PET, T1, and FLAIR datasets 
reconstructed by different methods (not all shown in Figure 
9). For PET images, the wQ‐MAPEM and SynPETMR recon-
structions achieve the highest CNR, whereas the TV‐MAPEM 
results in the lowest CNR due to reduced contrast between 
the gray and white matter. For T1 images, the SynMR‐T1‐
FLAIR and SynPETMR‐T1 methods achieve a relatively high 
CNR. The SynPETMR‐T1‐FLAIR method and wQ‐SENSE 
achieved similar but nonetheless lower CNR, which can be 
attributed to higher background noise. For the FLAIR images, 
the results show that almost all the reconstructions suffer from 
high background noise and low contrast, leading to negative 
CNR. However, the results show that the synergistic recon-
structions exhibit a relatively better performance.

4.4  |  Benefits of PET for MR image 
reconstruction
Our simulation results presented in Figures 3 and 4 show 
that synergistic reconstruction of PET and T1 MR (i.e., 
SynPETMR‐T1) and that of T1 and T2 (i.e., SynMR‐T1‐T2) 
perform quantitatively similar. However, visual inspection 
of the images, as shown in Supporting Information Figure 
S13, reveals that the SynPETMR‐T1 method is outperformed 
by SynMR‐T1‐T2 in the recovery of structural details. That 
is, the T2 image provides more information for the T1 image 
reconstruction than for the PET reconstruction. This can be 
attributed to the fact that the PET data are subject to both 
noise and detector blurring. Figure 10 compares different 
synergistic reconstructions of the in vivo PET‐MR dataset. 
The results show that all 3 synergistic methods deliver T1 
images of a similar quality.

4.5  |  Coupling of image modalities
The key component of synergistic reconstruction is coupling 
of common boundary information between different image 
modalities. In the proposed prior, this coupling happens 
through joint similarity coefficients calculated from simi-
larity coefficients of individual images (see Equation 4). To 
demonstrate this coupling effect, we compared synergistic 
T1 and T2 MR reconstructions with those guided using indi-
vidual similarity coefficients, namely self‐guided SENSE. It 
is worth mentioning that the difference between self‐guided 

F I G U R E  1 0   Comparison of different synergistic PET‐MR image reconstruction of the in vivo PET‐MR dataset. 
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SENSE and wQ‐SENSE is that in the former the weights are 
iteratively calculated from each image itself, whereas in the 
latter they are precomputed from a prior high‐quality image. 
Supporting Information Figure S14 shows the results of the 
brain phantom for different reconstruction methods. As indi-
cated by the yellow arrow, the wQ‐SENSE reconstruction of 
the T1 image, guided by a fixed fully sampled T2 image, sup-
presses the lesion, whereas the self‐guided SENSE and syn-
ergistic methods preserve this unique lesion. However, the 
white arrows indicate that the self‐guided method cannot re-
cover the pointed structures, whereas the synergistic method 
is able to fairly recover them due to coupling of T1 and T2 
boundary information. Supporting Information Figure S15 
also highlights this for synergistic reconstruction of a 14×‐
accelerated in vivo MR dataset. As indicated by the arrow, 
for reconstruction of the T2 image the synergistic reconstruc-
tion outperforms the self‐guided SENSE reconstruction.

4.6  |  Comparison with previous methods
In Ref. 3, we had previously proposed a generalized joint TV 
prior with an iterative rescaling of PET and MR gradients 
using a single global factor. Despite the promising simula-
tion results, this rescaling method is not a robust solution in a 
practical setting because the edges have different magnitudes 
for in vivo PET‐MR images. Thus, a single scale factor can-
not scale them properly, and the joint prior may degenerate 
to a separate conventional prior. In Supporting Information 
Figure S16, we compare our previous and current methods 
using a resolution phantom devised by Ref. 1 as a bench-
mark. As shown, both methods improve the quality of the 
PET‐MR images, especially the joint TV prior, despite the 
large relative intensity differences within the PET‐MR data. 
However, comparing our in vivo reconstructions in Ref. 3 
with those in the present work demonstrates that our newly 
proposed method can effectively harness the synergy of PET‐
MR data.

We also compared our method with the joint TGV method 
using the phantom and software publicly provided by Ref. 2. 
The results presented in Supporting Information Figure S17 
show that both synergistic methods perform similarly for 
modality‐shared edges but differently for modality‐unique 
lesions. For the PET‐unique lesion, the TGV algorithm re-
sulted in enhancement of the lesion, whereas our proposed 
method performs similarly to the standard MLEM. The TGV 
enhancement can be attributed to the fact that TGV relies 
on a total variation prior, which is an edge‐preserving prior. 
For this reason, the TGV PET reconstruction appears also 
nonuniform and patchy. For an MR‐unique lesion, the TGV 
results show that the MR unique lesion has been transferred 
into the PET image, which is not the case for our method. Our 
proposed reweighted quadratic prior can be easily extended 
to a that of a TV; however, it will make the optimization more 

complicated because the TV prior is not continuously differ-
entiable. Thus, either an advanced optimization algorithm is 
required or a smoothed TV prior (with an additional hyperpa-
rameter that controls the degree of edge preservation).

5  |   DISCUSSION

This work presents a reconstruction methodology that ad-
dresses some of the major challenges of synergistic recon-
struction while still exploiting the synergy of PET‐MR data. 
The proposed prior has the following properties: First, it is 
independent of the intensity ranges of the individual images 
(i.e., in Figure 1, the T1 image is in the range [0, 3 × 104], and 
the PET image is in [0, 1]). This is because the kernels () 
defined in Equation (4) are always in [0, 1], according to the 
definition of a normal distribution. Therefore, the joint coef-
ficients (�) are not dominated by the image with larger signal 
magnitude (in the above example, the T1 image) because all 
kernels are normalized and thus will have equal contribution 
to the joint coefficients. Second, it is scale‐invariant, that is, 
if the intensity range of a given image varies by a factor (i.e., 
if the T1 image in Figure 1 is scaled from [0, 3 × 104] to [0, 
3]), the kernels remain identical. This is because the images 
are first normalized to [0, 1], and then the kernels are calcu-
lated. Third, it is contrast‐invariant; that is, if the intensity 
range of a given image is inverted, the kernels remain identi-
cal due to the square in the exponent of the normal distribu-
tion. Note that the third property is not due to the nature of the 
proposed method but the preprocessing step of normalizing 
the intensity ranges of all input signals. In addition, the third 
property also holds true for any gradient‐based coupling such 
as joint TV or joint TGV reconstruction.

Given the high computational expense of synergistic re-
construction, we heuristically selected the required hyper-
parameters, as summarized in Supporting Information Table 
S3. For the simulations, 1 global iteration of synergistic PET‐
T1‐T2 reconstruction, which consisted of 2 MAPEM itera-
tions for PET, 2 CG iterations for T1, and 2 CG iterations for 
T2 (all with neighborhood sizes of 5 × 5 × 5) and their cor-
responding resampling, took about 8 min. Hence, 500 global 
iterations led to a total reconstruction time of 2.7 days. For 
in vivo PET‐MR data using the same update schedule as the 
simulations but with a smaller neighborhood size of 3 × 3 × 
3 (to reduce computation time), 1 global iteration took about 
4.3 min (total 11.25 h for 150 global iterations).

Overall, the performance of synergistic reconstruction de-
pends on the selected hyperparameters, especially the � and � 
used in Equations (2) and (4). The hyperparameter � controls 
the level of smoothness, whereas � controls the level of edge 
preservation. For a given �, as � is decreased all the details of 
the reconstructed images, including noise and undersampling 
artifacts, will be preserved because the resulting Gaussian 
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similarity function will be narrower and will map a smaller 
weight to intensity differences between voxels. Smaller 
weights lead to reduced regularization. In our experience, � 
has a higher impact on the algorithms’ performance and var-
ies substantially for different datasets. Neighborhood size is 
also another hyperparameter. It has been recommended that 
larger neighborhoods lead to better performance of guided 
reconstruction33; however, in this work we noticed that a 
neighborhood size of 3 × 3 × 3 is sufficient for both edge 
identification and faster computation. The update schedule 
is also another influential hyperparameter. The convergence 
rate and path of PET and MR reconstructions are different 
because the PET system matrix and MR encoding matrix 
have different condition numbers and use different optimiza-
tion algorithms. The key component of our methodology is 
calculation of the mutual similarity coefficients from the cur-
rent PET and MR image estimates; hence, the convergence 
of PET‐MR reconstructions per global iteration is of impor-
tance. In particular, if the MR undersampling factor is low, 
the convergence of the CG algorithm is faster. In this work, 
the updates for PET and MR reconstructions were kept at 2 
to 4 iterations per global iterations. Moreover, convergence of 
the employed alternating optimization to a global maximum 
is unknown because this algorithm was mainly built on sep-
arate PET and MR reconstruction methods. Hence, further 
work is required to study convergence.

In this work, we used a reweighted quadratic prior instead 
of a TV or TGV prior. The prior does not introduce addi-
tional hyperparameters or constant factors, and thanks to its 
continuous differentiability there is no need for advanced 
optimization algorithms, which in turn would add extra hy-
perparameters to ensure convergence. However, the iterative 
calculation of weighting coefficients means that the proposed 
joint objective has multiple local maxima because different 
initializations will result in different weighting coefficients 
and thus different solutions. Hence, our objective function is 
nonconvex (strictly speaking, nonconcave).

In terms of computational complexity compared to 
previous methods, the added computational load of our 
algorithm is not substantial because there is no need for op-
timization with respect to primal and dual variables as used 
in Ref. 2; and there is no optimization of an augmented 
Lagrangian problem as used in Ref. 3. The most time‐con-
suming stages are the individual regularized PET and MR 
reconstructions. However, the notable added computational 
burden of our algorithm is the spatial transformations used 
for mapping different image contrasts to each other before 
joint calculation of the weighting coefficients. We opted 
for this extra computational cost to reconstruct images in 
their native resolution. Knoll el al.2 performed reconstruc-
tion of PET‐MR images in the space of the MR image with 
high resolution, which can be especially time‐consuming 
for PET reconstruction.

Our in vivo data results in Figure 9 demonstrated that 
synergistic reconstruction can improve the quality of PET‐
MR images even compared to guided reconstructions, which 
utilize fully sampled MR images. For synergistic reconstruc-
tions, it was found that the gain obtained by PET is more than 
the little, if any, gain obtained for the MR images from the 
PET data. This can be mainly attributed to the lower resolu-
tion and relatively high noise level of PET data.

To be readily comparable to in vivo datasets, in this study 
the simulated fully sampled MR reconstructions were consid-
ered as the reference images instead of the ground truth. This 
is because it is widely regarded within the MR community 
that the goal is to reconstruct an MR image from undersam-
pled data with a quality comparable to a fully sampled MR 
image. In contrast, for PET imaging there is no such reference 
image due to the limited acquisition time and the limited res-
olution of current clinical PET scanners.

In this study, the feasibility and benefits of synergistic 
multi‐contrast MR and PET images was demonstrated. Future 
work will require evaluation of synergistic reconstruction of 
non‐FDG PET and MR data. In a normal healthy brain, FDG 
often has a uniform but contrasting uptake in gray and white 
matter, following the anatomical patterns of the MR im-
ages. For non‐FDG tracers, the potential merit of synergistic 
PET‐MR reconstruction would still need to be demonstrated 
because such tracers might demonstrate a local uptake with-
out any specific anatomical correspondence. Future work 
should also include synergistic reconstruction of multi‐frame 
dynamic PET data for improved SNR of the corresponding 
image frames.

6  |   CONCLUSION

The proposed method aims to exploit the synergy of PET‐
MR or multi‐contrast MR images irrespective of their rela-
tive intensity differences and contrasts. Mutually weighted 
quadratic priors were exploited to promote the simplicity and 
stability of the resulting algorithm. Our simulations and in 
vivo data reconstructions showed that the proposed syner-
gistic reconstruction can considerably improve on existing 
TV regularization methods and even prior‐image guided 
reconstructions, particularly in the presence of mismatches 
between image modalities.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

TABLE S1 Abbreviations and descriptions of the recon-
struction algorithms used for the simulated and real datasets 
in this study
TABLE S2 Reconstruction set‐ups for k‐space undersam-
pling of different MR image contrasts of the simulation and 
clinical datasets
TABLE S3 Parameters used for the reconstruction of the 
simulated and in‐vivo datasets using the studied reconstruc-
tion methods
FIGURE S1 Background ROIs used for calculation of CNR 
in the simulated brain phantom
FIGURE S2 Same as Figure 1, but with added voxel-wise 
error maps
FIGURE S3 Zoomed-in of Figure 1
FIGURE S4 Same as Figure 2, but with added voxel-wise 
error maps
FIGURE S5 Zoomed-in of Figure 2
FIGURE S6 Convergence of the reconstruction methods in 
terms of normalized root mean square error (NRMSE) in the 
whole brain for each image update of the simulated PET, T1 
and T2 MR datasets
FIGURE S7 Synergistic reconstruction of the prospectively 
undersampled T1 (left) and T2 (right) datasets for the first 
healthy volunteer. The acceleration factor and resulting ac-
quisition time (in minutes and seconds) of each scan are 
shown
FIGURE S8 Synergistic reconstruction of the prospectively 
undersampled T1 (left) and T2 (right) datasets for the second 
healthy volunteer. Acceleration factor and resulting acquisi-
tion time (in minutes and seconds) of each scan are shown
FIGURE S9 CNR between grey and white matter of the T1 
and T2 images of the in‐vivo MR datasets
FIGURE S10 Same as Figure 9 but for a sagittal slice. 
The arrow indicates Gibbs artefacts in the PET MLEM 
reconstruction
FIGURE S11 Zoomed in from Figure 9. The arrows point 
to structural artefacts induced by T1‐guidance of the FLAIR 
reconstruction, (i.e. wQ‐SENSE)

FIGURE S12 CNR between grey and white matter of the 
FDG‐PET, T1 and FLAIR images of the in‐vivo PET‐MR 
dataset
FIGURE S13 Comparison of different synergistic recon-
structions of the simulated PET‐MR dataset for synergistic 
reconstruction of T1 and T2 (SynMR‐T1‐T2), PET and T1 
(SynPETMR‐T1), and PET, T1 and T2 (SynPETMR‐T1‐
T2). Comparison of SynMR‐T1‐T2 and SynPET‐MR‐T1 
shows that the T1 image has been improved more when 
synergistically reconstructed with the T2 image than the 
PET image (see arrows). Synergistic reconstruction of all 
data together (in SynPETMR‐T1‐T2) is beneficial for all 
reconstructions
FIGURE S14 Illustration of the coupling effect of common 
boundary information between T1 and T2 datasets through 
their synergistic reconstruction. Compared to self‐guided 
reconstruction, the synergistic one is able to recover more 
structural details and at the same time preserve unique lesions 
that are otherwise suppressed by wQ‐SENSE
FIGURE S15 Same as Supporting Figure 14, but for the vol-
unteer MR scan #2
FIGURE S16 Performance comparison of the proposed syn-
ergistic reconstruction method with our previous work in (3), 
using a joint total variation prior generalized using a non‐con-
vex potential function, on the resolution phantom proposed by 
Ehrhardt et al (1) for the ‘radial 20’ simulation set‐up
FIGURE S17 Performance comparison of our proposed syn-
ergistic algorithm with the synergistic TGV one proposed in 
Ref (2). In this comparison, the code and simulated dataset 
were obtained from Ref. (24)
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