
To survive, an animal must continuously learn to pre-
dict and respond to challenges and opportunities in its 
environment. In many species, the social environment 
contains both the greatest challenges and opportunities 
to the individual. Conspecifics pose a deadly threat, but 
are at the same time key to survival, affording protection, 
nurturance and reproductive opportunities. Importantly, 
others also serve as vehicles for transmitting value 
information, helping the individual to avoid harm and 
maximize rewards. Indeed, from early on in develop-
ment, social animals learn the value of stimuli and of 
their own and others’ behaviours from each other1. 
The spread of such value information among peers and 
across generations gives social learning a unique role in 
the evolution of culture2. Here, we review cross-​species 
research on the neural and computational nature of 
social, value-based learning. Related processes, such as 
motor-​based imitation and social learning of skill and 
symbolic meaning, which are not directly linked to value 
information, are beyond the scope of the current review.

Most research on learning has occurred in a social 
vacuum3, and little is known about the neural and com-
putational mechanisms supporting the social trans-
mission of value information. The chief reason for this 
lack of progress is the immense complexity added when 
several individuals are dynamically interconnected4. 
Addressing this composite issue requires systematic inte-
gration across fields, including learning science, compu-
tational science, social and affective neuroscience, and 
behavioural ecology. Research related to social learning 
within these fields has largely progressed in parallel with 
little collaboration between them5, with some notable 
exceptions6–8.

In light of this, the current review draws on new knowl-
edge from these diverse fields to provide a synthesized  

view of social learning. We begin by surveying recent 
research on domain-​general principles of learning, high-
lighting core computational and neural mechanisms of 
Pavlovian and instrumental learning that apply across 
task domains. Next, we survey a selection of findings 
in the neuroscience of social cognition, which is the 
study of how individuals connect with the minds of 
others. This leads us into the central discussion of how 
domain-​general principles of learning and social cogni-
tion jointly contribute to social learning. We highlight 
recent research on social learning in both the aversive  
and appetitive domains: experimental work in human and  
non-​human animals, describing the mechanisms 
underlying learning about the value of stimuli (Fig. 1a–c)  
and actions (Fig. 1d,e), and theoretical models from 
learning theory and behavioural ecology, outlining the 
functions of learning in terms of its underlying compu-
tations and social learning strategies (SLS), respectively. 
Throughout, we discuss how social learning provides the 
basis for a range of more complex social phenomena, 
such as conformity and cultural traditions. We conclude 
that research on social learning provides an exception-
ally well-​suited paradigm to bridge the study of neural 
mechanisms with behavioural functions and social 
phenomena on a larger scale.

Computational basis of value learning
Over the past decades, ideas from learning theory, cog-
nitive science and artificial intelligence have converged 
on a unified framework — reinforcement learning 
— to describe how agents learn to maximize rewards 
and minimize punishments9,10. A core idea of rein-
forcement learning is that agents form expectations 
about the value of possible actions and environmental 
states (for example, stimuli) through error-​minimizing 

Social learning
Learning from others, for 
example through observation 
and instruction, which may or 
may not involve directly 
experienced or vicarious 
reinforcement.

Value-​based learning
Learning about rewards and 
punishers, which promote  
the organization of behaviour 
for maximizing rewards and 
minimizing punishments
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mechanisms. The most basic of such mechanisms, 
the Rescorla–Wagner learning rule, specifies that the 
mismatch — the prediction error — between the expe-
rienced value of an unconditioned stimulus (US, such 
as an electric shock) and the expected value of a dis-
criminative cue (conditioned stimulus (CS), such as a 
tone) is used to update the value of the CS. Experience 
with the world hence leads to progressively smaller pre-
diction errors, and stronger association between the 
CS and the US, during the course of learning11. Similar 
learning rules, modified to allow sequences of actions 
(for example, in mazes), are also used in more complex 
action learning algorithms (for example, Q-​learning12).

Seminal work has established that learning — and, in 
its extension, the decision-​making underlying behaviour 
— involves multiple neural and computational valua-
tion systems13,14. A basic division is drawn between the 
Pavlovian and instrumental systems15,16, mirroring 
the distinction between stimulus and action learning 
in classical animal learning theory. Both systems share 

the common principle of prediction and error correc-
tion, which permits modelling both types of learning 
within a unified formal framework, but differ in how 
learned predictions relate to behaviour. The Pavlovian 
system elicits a varied set of reflexes and fixed behav-
iours, such as freezing, in response to cues with intrinsic 
or learned (through Pavlovian conditioning) aversive or 
appetitive value, without evaluating the consequences of 
these actions. From a computational perspective, such 
fixed responses can be viewed as evolutionarily prepro-
grammed, facilitating avoidance of fitness-​harming cues 
and approach towards fitness-​promoting cues15,17.

In contrast to the inflexibility of the Pavlovian system, 
the instrumental system assigns value to actions based 
on their reinforcement history, which guides adaptive 
action selection. Accordingly, animals can learn arbitrary 
actions to acquire rewards and to avoid punishments. 
A common view is that there are two parallel instru-
mental systems, one goal-​directed (model-​based) and 
one habitual (model-​free)13. The goal-​directed system 
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Fig. 1 | Schematic illustration of experimental procedures examining social threat and avoidance learning in 
rodents, monkeys and humans. a–c | Pavlovian social threat learning through presentation of a conditioned stimulus (CS) 
paired with defensive responses of a conspecific, the ‘demonstrator’. a | A naïve rodent, the ‘observer’, perceives a 
demonstrator displaying defensive behaviours when it receives a shock combined with a tone (CS) and, subsequently ,  
the observer expresses learned threat responses when the tone is sounded, despite not having experienced a shock118–121. 
b | A monkey observer watches a demonstrator’s defensive behaviour towards a snake, which serves as the CS, and, 
subsequently , the observer expresses learned threat responses to the CS232. c | A human observer watches a demonstrator 
displaying behavioural signs of discomfort and pain when receiving a shock paired with a picture of a snake or a neutral 
stimulus, which serves as the CS, and, subsequently , the observer expresses learned threat responses and fear when 
presented with the CS28,126,127,133,137. d–f | Instrumental learning of avoidance behaviour occurring through the presentation 
of a demonstrator’s defensive behaviour and avoidance. d | A rodent learns to avoid a specific compartment of the cage in 
a shuttle box after perceiving the demonstrator’s defensive responses when receiving a shock in that compartment172,173.  
e | A monkey learns to avoid eating certain kinds of food after observing the aversive consequences through a demonstrator’s 
behaviour213. f | A human learns to avoid selecting cues in a two-​alternative forced choice task after watching a  
co-​participant’s choice and aversive choice outcome in the same task175,202.
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constructs a ‘model’ of the environment (for exam-
ple, the probability that action X will lead to specific  
outcome Y), which can be used to incorporate additional 
information (for example, changes in motivational state 
or instructions about changes in the environment) on 
the fly. In contrast, it is generally thought that the habit-
ual system is model-​free and elicits actions in response 
to the previously learned expected value of cues (see 
ref.18 for a recent challenge to this account, arguing that 
habits can be understood as triggered directly by a stim-
ulus, in a value-​free manner). Owing to the lack of an 
internal model, model-​free control is inflexible, as it can-
not incorporate new information (for example, hunger) 
without additional learning (for example, in the hungry 
state). Importantly, Pavlovian approach and avoidance 
response tendencies can facilitate, or impede, instru-
mental actions depending on the alignment between 
the values of the different systems16,19–21.

The distinction between Pavlovian and instrumen-
tal learning mechanisms discussed above has a direct 
analogue in Pavlovian and instrumental experimen-
tal paradigms, which have been used for a century to 
examine non-​social learning, and, more recently, learn-
ing through social means. The use of such behavioural 
paradigms (Fig. 1) has enabled the study of how the brain 
implements Pavlovian and instrumental computations, 
linking behaviour to its neural underpinnings through 
their common computational basis. Next, we discuss 
domain-​general neural and computational mechanisms 
underlying such learning.

Learning through direct experiences
Direct Pavlovian threat learning. Until recently, the link 
between computational mechanisms and their neural 
implementations has seldom been explicitly addressed 
in Pavlovian threat or fear-​conditioning research, 
which has been the most common paradigm to exam-
ine Pavlovian learning. Research on animals often uses 
a sound as the CS, a foot shock as the US and freezing as 
the conditioned response. Decades of research using this 
simple experimental model in rodents has shown that 
sensory information from the midbrain, thalamus and 
cortex converges in the lateral amygdala, where CS–US 
associations are formed during learning22 (Fig. 2a). The 
lateral amygdala and the basal amygdala also receive 
inputs from other regions, such as the prefrontal cor-
tex (PFC) and the hippocampus. These inputs provide 
integrated information about the emotional history of a 
stimulus, the internal state of an organism, context and 
time23,24. The central amygdala, in turn, projects to mid-
brain regions, such as the periaqueductal gray (PAG), 
and the brainstem, mediating defensive responses25. 
Interestingly, the PAG has also been linked to the predic-
tion error and modulations of expectations as described 
by computational learning models26–28. Recent studies 
using optogenetics have added more complexity to this 
picture and shifted attention from structures to neural 
circuits within structures. This development has shown 
that, within a single region, different neuronal popu
lations can have different or even opposite functions. For  
instance, the basolateral amygdala29 has been found to 
contain two separate neuronal populations controlling 

responses to negative stimuli and to positive stimuli, 
respectively. As the same spatial resolution is not possi-
ble in research on humans, thus cross-​species compari-
sons are not possible, the current review only discusses 
research based on optogenetics to a limited degree.

Human studies, using functional MRI, have demon-
strated the involvement of a set of regions analogous with 
those described in rodents, supporting the idea that the 
basic neural and computational mechanisms for acquir-
ing and expressing threat responses are conserved across 
species30,31 (Fig. 2b). The human amygdala is massively 
interconnected with cortical regions, including the hip-
pocampus and the ventromedial PFC (vmPFC), which 
are critical for encoding and retrieving contextual infor-
mation and regulating conditioned threat responses, 
respectively. A major function of the hippocampal–PFC 
circuitry is to disambiguate cues with varying meanings 
in different contexts23, be they social or non-​social in 
nature. The amygdala has reciprocal connections with 
the anterior insular cortex and the anterior cingulate  
cortex (ACC), which have both been implicated in 
the formation of threat memory across species32,33.  
In humans, these regions are involved in the aversive 
experiences of receiving, anticipating and controlling 
painful and otherwise unpleasant stimulation34–37, as well 
as learning and regulating defensive responses38.

Learning that previously threatening stimuli are 
safe through repeated exposure without any aversive 
consequences — extinction learning — draws on the 
vmPFC and the amygdala39–41, although the involvement 
of the vmPFC in humans seems to be specific to cer-
tain experimental design features according to a recent 
meta-​analysis42. It is currently unclear to what extent the 
vmPFC contributes to the formation of new memory 
traces during extinction that inhibit the original CS–
US associations and/or permanently alters the original 
memories, and how other factors, such as approach and 
avoidance behaviour39,43, attention44 and social stim-
uli45, contribute to these processes. As discussed below, 
research has now begun to unveil how the brain regions 
involved in self-​experienced learning take on both sim-
ilar and distinct roles during social learning about threat 
and its update to safety, as well as rewards.

Direct Pavlovian reward learning. In both primates 
and rodents, the processing of reward information and 
learning of approach behaviours draw on brain circuits 
involving dopaminergic projections, such as the nucleus 
accumbens (NAcc) — a forebrain region located in the 
ventral striatum — receiving dopaminergic input from 
the ventral tegmental area (VTA) and substantia nigra 
pars compacta46–49 (Fig. 3a,b). Recently, optogenetic studies 
in rodents, allowing for fine-​grained parsing of functional 
units brain regions, have nuanced our understanding of 
these processes. For example, it has been shown that 
dopamine neurons in the VTA are phasically excited 
by both reward and reward-​predicting cues, whereas 
GABAergic neurons signal expected reward50. The VTA 
does not, however, only contain reward-​related circuits 
but also anatomically and functionally heterogeneous 
neuronal subpopulations with different axonal projec-
tions, which separately mediate reward and aversion50,51. 

Optogenetics
The use of genetically 
encoded, light-​activated 
proteins to modulate activity of 
specific neural circuits. 
Optogenetics allows for 
targeting specific cell types or 
projections to learn the causal 
relationship between their 
activity and behaviour.
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The NAcc receives projections from the amygdala, hip-
pocampus and prefrontal cortex, which are involved in 
reward processing52–55. Similarly to the VTA, function-
ally distinct valence-​selective neuronal circuits have been 
identified in the amygdala and tied to behavioural func-
tions56. Importantly, the flexible regulation and coordina-
tion of behavioural appetitive responses depends on the 

orbitofrontal cortex57,58 and other regions of the PFC59,60. 
This network is highly conserved across species61 and 
plays an analogous role in human reward learning62.

Direct instrumental learning. The ability to learn new 
behaviours to avoid threats and approach rewards in the 
environment is a key survival function across the animal 
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Fig. 2 | Social threat learning partially shares neural mechanisms with 
self-experienced learning in both rodents and humans. a–b | Light 
blue-​shaded areas refer to regions involved in non-​social threat learning and 
red-​shaded areas refer to regions involved in social threat learning; regions 
involved in both social and non-​social threat learning are marked by purple 
shading. Green-​shaded areas refer to regions implicated in processing of 
social information (social cognition), such as the attribution of mental states. 
The bidirectional arrows illustrate the flow of information between brain 
regions. Studies on non-​social threat learning in rodents reveal a neural 
circuit centred on the amygdala, in particular its lateral, basal and central 
nuclei, prefrontal cortex (PFC), hippocampus and periaqueductal gray (PAG), 
as critical for the acquisition and expression of conditioned threat 
responses. Brain imaging studies in humans have identified a similar network 
of structures involved in non-​social threat learning, suggesting that the basic 
mechanisms are conserved across species. Moreover, the anterior cingulate 
cortex (ACC) and anterior insula, both reciprocally connected to the 
amygdala, have been implicated in the formation of threat memory across 
species. Studies of social threat learning in rodents and humans converge 

on the conclusion that, similarly to direct threat learning, the amygdala, 
anterior insula and ACC are involved in social learning. Although several 
neural mechanisms for social and non-​social learning are similar, social 
learning is also distinguished from learning based on self-​experience in 
several ways. For example, the use of optogenetic techniques in rodents has 
isolated different ACC projections involved in vicarious learning (to the 
basal amygdala (BA)) and direct learning (to the hippocampus), illustrating 
the presence of functional heterogeneity within this region. Similar 
heterogeneity is likely to exist in many brain regions. In humans, learning by 
watching a demonstrator’s reactions to a shock , relative to directly 
experienced shocks, provokes greater functional connectivity between the 
threat learning circuit and the mentalizing network (marked here in green, 
part b). ACCg, gyrus of the ACC; CeA , central amygdala; dlPFC, dorsolateral 
PFC; dmPFC, dorsomedial PFC; IPL , inferior parietal lobule; L A , lateral 
amygdala; ME, medial nucleus of the amygdala; mPFC, medial PFC; NAcc, 
nucleus accumbens; STS, superior temporal sulcus; TPJ, temporoparietal 
junction; vPMC, ventral premotor cortex; vmPFC, ventromedial PFC;  
VS, ventral striatum.
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kingdom. The acquisition of such adaptive behaviours 
is typically studied with instrumental learning para-
digms, in which the individual learns to avoid shocks or 
obtain food and safety through first-​hand, direct expe-
riences of the action–outcome relationship. Research in 
rodents shows that the instrumental control of avoidance 

behaviour includes the lateral amygdala and the basal 
amygdala (together forming the basolateral nucleus of 
the amygdala)63,64, the hippocampus65 and PFC–striatal 
circuits66, whereas learning a relationship between an 
action and a reward relies on the striatum67 and the PFC68 
(Fig. 3a). Encoding the value of a reward has been shown 
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Fig. 3 | Social reward learning partially shares neural mechanisms with 
self-experienced learning in both rodents and humans. a–b | Light 
blue-​shaded areas refer to regions involved in non-​social reward learning 
and red-​shaded areas refer to regions involved in vicarious reward learning; 
regions involved in both social and non-​social reward learning are marked 
by purple shading. Green-​shaded areas refer to regions implicated in 
processing of social information, such as the understanding and attribution 
of mental states, and dark blue-​shaded areas refer to core regions of the 
action/mirror network. Animal studies on non-​social reward learning 
suggest a network of structures mediating stimulus-​reward associations. 
This network includes dopaminergic neurotransmission from the ventral 
tegmental area (VTA) and substantia nigra pars compacta (SN) to the 
nucleus accumbens (NAcc) and the prefrontal cortex (PFC). Importantly , this 
network also includes the amygdala, hippocampus and prefrontal and 
orbitofrontal cortices. The network involved in non-​social reward learning 
network is conserved across species and partially overlaps with that 

enabling social reward learning. Research across primates highlights the 
importance of the gyrus of the anterior cingulate cortex (ACCg) for various 
aspects of vicarious reinforcement learning. In humans, brain imaging 
research shows that, similarly to non-​social reward learning, vicarious 
reward learning engages the ventral striatum. Imaging studies show that 
whereas both vicarious and direct rewards activate the ventromedial PFC 
(vmPFC), the NAcc is preferentially engaged in personal reward, highlighting 
both common and unique components of vicarious reward processing. 
Similarly to social learning in the aversive domain, social reward learning 
engages brain regions supporting the processing of social information,  
including the mentalizing (marked in green) and the action/mirror  
(marked in dark blue) networks (part b). ACC, anterior cingulate cortex; 
dlPFC, dorsolateral PFC; dmPFC, dorsomedial PFC; IPL , inferior parietal 
lobule; mPFC, medial PFC; OFC, orbitofrontal cortex; STS, superior temporal 
sulcus; TPJ, temporoparietal junction; vPMC, ventral premotor cortex;  
VS, ventral striatum.
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to involve the dorsomedial striatum69 and the basolat-
eral amygdala70. Whereas the dorsomedial striatum and 
the prelimbic part of the PFC (the rodent homologue  
of the human dorsal ACC) are implicated in goal-​directed,  
or model-​based, actions, the dorsolateral striatum and 
infralimbic part of the PFC (the rodent homologue of 
human vmPFC) are involved in the control of habitual, 
or model-​free, actions71,72, suggesting different neural 
substrates of model-​based and model-​free learning.

In humans, the vmPFC, highlighted above for its role 
in the regulation of threat responses during extinction, 
has also been implicated in the subjective valuation of 
chosen actions as formalized in computational models73. 
Interestingly, recent findings in rodents suggest, con-
trary to mainstream theories claiming that the expected 
value represented in the PFC drives choices, that the 
expected value might instead primarily drive learning 
processes that, in turn, update choice mechanisms in 
other regions of the brain74. Adding further to the inter-
est of the vmPFC in social learning is the role of this 
region in distinctly social functions, such as perspective 
taking75, which is discussed below. Taken together, the 
implication of the vmPFC in regulation, valuation and 
social cognition has provoked a discussion of to what 
extent these functions are separable within this brain 
region or express common mechanisms76. As in rodents, 
the dopaminergic cortico-​striatal circuits are critical to 
reward learning in humans (Fig. 3b). In particular, the 
dorsal striatum has been linked to prediction-​error sig-
nals consistent with formal models of reinforcement 
learning77,78.

In sum, learning about instrumental action–outcome 
contingencies has been linked to cortico-​striatal circuits 
and dopaminergic prediction-​error signals across spe-
cies. Next, we discuss how social learning draws on the 

domain-​general Pavlovian and instrumental learning 
mechanisms so far described, in conjunction with brain 
systems responsible for social cognition.

Learning in a social world
Social learning can be broadly defined as learning from, 
or in interaction with, other individuals. This form of 
learning is often adaptive, because it allows learning 
about the world while minimizing exposure to preda-
tion and other threats and offers access to others’ inno-
vations2,79. For instance, a mouse pup might acquire 
avoidance behaviours through the pairing between 
arbitrary odour cues and the smell of its frightened 
mother acting as a ‘demonstrator’80, and a social media 
user might learn to avoid certain locations through 
posted warnings during a terror strike or learn about a 
hidden place to forage wild strawberries. Social learning 
can, however, also be maladaptive, and clinical research 
demonstrates that irrational fears and anxieties are com-
monly transmitted between caretakers and offsprings81. 
In today’s social media landscape, threat information 
quickly spreads globally with large potential impact. 
For example, a recent meta-​analysis demonstrates an 
increased prevalence of psychological disorders fol-
lowing exposure to media coverage of disasters and 
large-​scale violence in other parts of the world82.

Formal models in theoretical biology also predict 
that social learning can sometimes be maladaptive, as 
information gleaned from demonstrators risks being 
outdated or error prone. The theoretical solution to this 
apparent paradox is to only learn from, or copy, the right 
demonstrators, at the right time83,84. SLS, which specify 
from whom and when to learn to optimize behaviour, 
offer such solutions. SLS that are determined by the 
context of learning come in three basic types: ‘when’, or 
state-​based, SLS (for example, ‘copy when non-​social 
learning is costly’, ‘copy when uncertain’); ‘who’, or 
demonstrator-​based, SLS (for example, ‘copy based  
on demonstrator’s knowledge’, ‘copy based on familiar-
ity’); and frequency-​dependent or conformity-​biased 
SLS (‘copy the majority’)79. It remains a contentious 
issue whether such SLS actually are distinctly social, 
or rather emerge from basic, non-​social learning 
mechanisms (Box 1).

In parallel to research on SLS, a growing number of 
studies have investigated the neural and computational 
mechanisms of social learning across species3,85. Much 
of this research has directly or indirectly examined key 
computations implicated in SLS, providing evidence for 
the involvement of both domain-​general associative/
reinforcement learning mechanisms and uniquely social 
neural mechanisms. Below, we review research on social 
cognitive processes and how these are related to the com-
putational and neural mechanisms underlying different 
types of social learning, and, where possible, highlight 
how these can be linked to different classes of SLS.

Neuro-​computations of social cognition. In contrast to 
non-​social learning, which is reinforced by direct aver-
sive or rewarding experiences, social learning relies on 
the processing of social information. Such processes can 
be described at different levels of complexity, from the 

Box 1 | What is social about social learning?

Social learning strategies (SLS) — the set of strategies proposed by behavioural 
ecologists for when to learn socially — are by definition agnostic about the mechanisms 
that underlie social learning5. However, learning theorists have recently proposed that 
the very notion of SLS as distinctly social, and subject to natural selection, is misleading 
because many purported experimental demonstrations of SLS can be explained by the 
same domain-​general learning mechanisms as non-​social learning221–223. According to 
this account, there are no mechanisms uniquely dedicated to, or adapted for, social 
learning. Differences between species in social learning abilities depend on ‘input 
mechanisms’, such as variability in attention to social stimuli, rather than on different 
learning mechanisms. Through associative learning and acculturation, social learning 
might falsely come to appear as uniquely social. Critics of this view argue that the  
large variability between species in social learning capabilities (for example, humans  
vs chimpanzees) suggests selection for social learning capacitates5. Recently, a 
computational theory was described that shows that a large part of social learning 
phenomena among non-​human animals can be accounted for by associative, 
model-​free reinforcement learning mechanisms224. In contrast, adaptive social learning 
among humans might require explicit metacognitive knowledge about whom to learn 
from206. As described throughout the main text, the neuroscientific study of social 
learning has revealed strong similarities in the neural mechanisms that underlie social 
and non-​social forms of learning. However, it is also clear that some forms of social 
learning recruit a distinct set of neural regions, such as those involved in representing 
others’ motivational states (for example, the temporoparietal junction in humans114, 
and the medial prefrontal cortex, superior temporal sulcus and gyrus of the anterior 
cingulate cortex across primates3,6,85,111). Future research across species, combining 
computational approaches with neural exploration8, will be required to fully understand 
what is ‘social’ about social learning.
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perception of simple social stimuli to the simulation/
sharing and understanding of others’ emotions86–89. For 
the sake of simplicity, here we refer to these processes 
jointly as ‘social cognition’. An important goal for the 
neuroscience of social learning is to investigate the role 
of such information processing in learning. Studies in 
both humans and other animals suggest that the ability 
for social learning is conditional on undisrupted devel-
opment of social skills90–92 (see Box 2), underscoring that 
social cognition is a key constituent in social learning.

Research in non-​human animals has shown that 
exposure to the sight, sound or smell of a threatened 
demonstrator animal triggers or potentiates threat 
responses in the observer93–95. This phenomenon, com-
monly referred to as fear contagion96,97, enhances subse-
quent direct aversive learning98. Fear contagion typically 
involves the ACC, lateral amygdala, basal amygdala, cen-
tral amygdala and medial amygdala95. Similar responses 
in humans99 and other primates100,101 suggest that a 
demonstrator’s emotional expression of, for example, 
pain might itself serve as a vicarious reinforcer, a US, 
imbuing neutral stimuli with value and motivating 
actions. In such cases, when the outcomes (for exam-
ple, rewards or punishments) incurred by others can be 
observed, the same general computational mechanisms 
that underlie non-​social learning can support social 

learning. We refer to this as vicarious reinforcement learning 
(VRL). In VRL, the vicarious US stands in for the 
self-​experienced US to provide the basis for the same 
type of prediction-​error computations as in non-​social 
learning (Boxes 2,3). VRL can involve either model-​free 
or model-​based learning mechanisms, and can be used 
by both the Pavlovian and instrumental systems, thereby 
driving Pavlovian responses as well as actions (associat-
ing cues and vicarious USs, and others’ actions and their 
outcomes, respectively; Box 3). Pavlovian VRL might, 
however, be computationally simpler than instrumental 
VRL, as the former does not require the transformation 
between observed and own actions, which is known as 
the ‘correspondence problem’102.

The value of vicarious reinforcement is influenced by 
higher social cognition, including a representation of the 
situation and the motivation of the observer7,89, thereby 
implicating internal models of others’ mental states in 
the value computation. For example, expressions of 
pain in a competitor103 or an out-​group member might 
instigate learning104, but not empathy and helping behav-
iour. Interestingly, the formation of stronger and weaker 
empathic responses and prosocial behaviours can itself 
be described in terms of reinforcement learning105,106. 
Furthermore, because VRL is a general process, it might 
provide the computational foundation for many differ-
ent SLS, because it enables learning about the environ-
ment without direct experience, which can be costly in 
terms of energy expenditure and exposure to predators.

Brain regions implicated in the perception of others’ 
actions might also contribute to social learning via the 
computation of action prediction errors, which reflect 
the mismatch between the observed and expected action 
performed by another individual, as well as between the 
expected and actual outcome of the action (Box 3). Such 
signals have been reported in the dorsolateral PFC and 
the vmPFC107,108, respectively, as well as in mirror neuron 
regions in the premotor and parietal cortex implicated 
during action perception and simulation109 (Figs 2b,3b). 
These perceptual and motor regions are closely con-
nected with a network of brain regions processing more 
abstract social cognition, for example, inferences about 
others’ beliefs and intentions. Such mentalizing or ‘the-
ory of mind’ builds an internal model of the social world 
and can thus be seen as contributing model-​based pro-
cesses to learning110. The superior temporal sulcus (STS) 
is a multimodal region integrating mentalizing processes 
carried out in the dorsomedial PFC (dmPFC)86,111 with 
information from the action perception stream, impor-
tantly including others’ gaze direction112. In addition, the 
temporoparietal junction (TPJ)113, which directs atten-
tion to salient information, represents others’ beliefs and 
has been causally linked to strategic mentalizing pro-
cesses114 (Figs 2b,3b). Taken together, these interconnected 
regions enable humans to attend, monitor and interpret 
others’ emotional expressions, motivations and actions.  
These processes not only prepare the perceiver for the 
appropriate action but also provide the foundation for 
learning from others, which is supported by studies 
showing that engaging these regions contributes to learn-
ing. For example, activity in the dmPFC, the STS and 
the TPJ while viewing persuasive messages is associated 

Box 2 | The origin of vicarious reinforcement

Why would others’ experiences of reward or discomfort motivate behaviour? One 
hypothesis is that such vicarious reinforcements are in fact learned by past, direct 
experiences. Accordingly, if rewards and punishments received by others often 
co-​occur with self-​experienced outcomes, this would support second-​order learning,  
a process which imbues cues with reinforcement value of their own224. For example, if 
one’s siblings often are rewarded at the same time as oneself, this could support an 
association between others’ reward responses and directly experienced rewards.  
Other social cues, such as faces, can also readily derive their value from direct learning 
experiences. For example, others’ smiling faces might often be paired with direct 
rewards (an unconditioned stimulus (US), such as food and sexual rewards). So far,  
the ontogeny of social reward processing is not well mapped, but this account would 
predict that differences pertaining to the social environment during childhood and 
adolescence would be predictive of individual differences in adult social learning.  
This conjecture is supported by research showing that rodents reared in social isolation 
display impaired social learning91,92, despite showing similar levels of direct conditioning92. 
Studies on the impact of impoverished environments on the human brain225 suggest 
that such experiences might cause similar deficits in social learning in humans, possibly 
through negative implications of prematurely developed amygdala–medial prefrontal 
cortex connections90. It should be noted, however, that the early social learning might 
occur without the involvement of the anterior cingulate cortex, which is not developed 
in the infant226.

An alternative hypothesis is that vicarious reinforcements carry intrinsic value, 
serving as USs in their own right. Studies of empathic pain responses in non-​human 
animals provide evidence for the role of both conditioning and intrinsic factors100.  
For example, rhesus macaques avoid pulling a rope that simultaneously delivers food 
reward to themselves and painful electric shocks to a co-​specific101. This tendency  
was amplified by previous shock experience, suggesting the contribution of previous 
individual learning to vicarious reinforcement, but, importantly, did not require it.  
The same effect has been observed in rodents where an animal’s own experiences of 
shocks enhance119,128,130, but are not necessary for118,131,227, vicarious threat conditioning 
to occur.

A third approach that integrates the two previous ones is that certain social stimuli, 
such as emotional faces, and other species-​specific social cues are innately predisposed 
to be associated with congruent USs. Similar to prepared avoidance learning228 about 
potentially dangerous stimuli, this view argues that learning is necessary, but not 
sufficient.

Fear contagion
An individual’s fear and related 
behaviours directly trigger 
similar emotions and 
behaviours in others.

Vicarious reinforcement 
learning
Use of vicarious reinforcement 
as a stand in for directly 
experienced reinforcement in 
reinforcement learning 
algorithms.

Vicarious reinforcement
A motivating outcome, such as 
a reward or punishment, 
observed or otherwise known 
to be incurred by another 
individual.

Empathy
The sharing and understanding 
of the affective state of another 
individual.
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with feeling persuaded afterwards115. The increased 
efforts to apply formal models to the processing of oth-
ers’ emotional116 and cognitive117 states will facilitate 
the integration of social cognition with learning theory 
through a common computational basis, and thereby 
further our mechanistic understanding of these and sim-
ilar findings. Next, we explore how the computational 
and neural links between domain-​general learning and 
social cognition provide an account of social learning,  
beginning with its most fundamental forms.

Learning through social means
Social Pavlovian threat learning. When a rat or a mouse 
is confronted with a conspecific demonstrator receiving 
foot shocks (a vicarious reinforcement) in the neigh-
bouring compartment of the experimental cage, the 
observing animal responds with defensive responses, 
such as freezing118–120, heart rate deceleration and 

distress vocalizations121, and forms threat memories118 
(Fig. 1a). Social threat learning can also emerge from 
interaction with a conspecific expressing a learned 
defensive response (fear conditioning by proxy122 or a 
mother-​to-​infant transfer of fear80). For example, semi-
nal studies in monkeys123 showed that cage-​reared mon-
keys quickly acquired long-​lasting defensive responses 
towards snakes after only one exposure to a conspecific’s 
expressions of distress, including withdrawal, grimacing 
and vocalization (serving as vicarious reinforcements) 
(Fig. 1b). Importantly, the strength of the relationship 
between the demonstrator’s distress, the observer’s 
immediate response to the demonstrator and the sub-
sequent expression of learning by the observer was 
comparable to the relationship between the US, the 
unconditioned response and the conditioned response 
in non-​social threat learning. These findings support 
the view that socially transmitted Pavlovian learning 
and self-​experienced Pavlovian conditioning rely on 
similar learning mechanisms. Recently, these findings 
have been confirmed and extended in human chil-
dren81,124 and adults125–127 using measures of behaviour 
and peripheral and central neurophysiology (Fig. 1c). The 
studies surveyed in this section illustrate how SLS, such 
as ‘copy when non-​social learning is costly’ (for example, 
under risk of predation), might be underpinned by basic 
learning mechanisms.

As discussed previously, the basolateral amygdala, in 
particular its lateral part and the ACC — key structures 
involved in direct Pavlovian threat conditioning (Fig. 2) 
— are similarly critical for vicariously learned freezing 
responses and subsequent recall of context-​specific 
threat memory118. Recently, specific neurons in the 
ACC that respond both when rats experience pain and 
while they witness another rat receiving foot shocks 
have been identified, suggesting that some neuronal 
mechanisms are shared by direct and social experi-
ence128. Interestingly, whereas some researchers have 
suggested that parts of the rodent ACC are specifically 
involved in vicarious learning118, other research shows 
the involvement of the ACC in direct fear learning129. 
This and similar discrepancies may stem from differ-
ent behavioural protocols of threat conditioning used in 
these studies, as well as from functional heterogeneity 
within the ACC, with some projections being involved 
specifically in social, and others in direct, Pavlovian 
learning. In line with this, recent studies have shown 
that the ACC–basolateral amygdala projection130, as well 
as the lateral amygdala–medial amygdala projection131, 
are critical for social, but not direct Pavlovian, threat 
learning130, whereas the ACC–hippocampus projection 
is involved in retrieval of fear memory originating in 
self-​experienced events32. Verifying the potential dou-
ble functional dissociation of these pathways in direct 
and social threat learning, respectively, requires fur-
ther studies that examine the fine-​grained functional 
heterogeneity of the ACC.

Findings from brain imaging studies in humans 
resonate nicely with the animal work described above 
by showing that social learning recruits networks 
involved in direct learning, including the amygdala, 
anterior insular cortex and ACC28,126,132,133 (Fig. 2a,b). 

Box 3 | Computational modelling of social learning

The neuroscience of social learning has capitalized on the success of formal modelling 
in cognitive neuroscience229. Formal models provide testable accounts of the 
computational mechanisms assumed to underlie behaviour and allow relating latent 
signals (for example, prediction errors) to neural activity, using model-​based functional 
MRI230. The basis of most learning models in cognitive neuroscience is the simple 
Rescorla–Wagner updating rule that describes how the expected value of cue i (EVi) 
changes after prediction errors from trial t to trial t + 1:

α δ= + ×+EV EV (1)i
t

i
t t1

δ = −R EV (2)t t
i
t

where Rt is the outcome value of the reinforcement (the unconditioned stimulus) and α 
is a learning rate parameter that determines the impact of the prediction error (δt, Eq. 2) 
on the updated expected value. When agents are selecting between different actions, a 
choice rule (termed Softmax) transforms the current expected values to action 
probabilities (example with two alternative choices, A and B) at trial t:

β β β= × ∕ × + ×( )( ) ( ) ( )P EV EV EVexp exp exp (3)A
t

A
t

A
t

B
t

where β, the inverse temperature, determines the sensitivity of the choice to the 
difference in value between the alternatives. Studies of social learning have extended 
this basic model to incorporate learning from others. In a seminal study107, participants 
observed a demonstrator making choices between two cues and observed the outcomes 
of these choices, before making choices themselves between the same cues. In their 
model107, the observer’s own expected values (transformed into probabilities using Eq. 3) 
served to generate action prediction errors upon seeing the demonstrator’s choice:

δ = − P1 (Observed action) (4)t t
ACTION

δACTION
t, the action prediction error, directly biased the observer’s subsequent probability 

of making the same choice (for example, if choice A was observed):

κ δ= + ×P P (5)A
t

A
t t

ACTION

where κ determines the strength of ‘imitation’. When the outcomes of the demonstrator’s 
actions were revealed, the observer used vicarious reinforcement learning to update 
expected values according to Eqs. 1,2, substituting α with aSocial. The updated expected 
values were entered into Eq. 3 to determine the choice. By regressing the latent variables 
of this model on the functional MRI data, it was shown that the dorsolateral prefrontal 
cortex encoded action prediction errors, whereas the ventral striatum and the 
ventromedial prefrontal cortex encoded vicarious prediction errors. These findings 
demonstrate both the utility of computational models for disentangling the processes 
underlying social learning and the involvement of similar mechanisms as in non-​social 
learning. Recent studies have extended the computational approach by showing how 
prediction errors encoding different forms of uncertainty modulate social learning231.

Domain-general learning
Mechanisms contributing to 
many cognitive functions, 
across situations and tasks.

Vicarious learning
Learning from others without 
any directly experienced 
reinforcement. Sometimes 
used synonymously with 
‘observational learning’.
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As yet, methodological constraints in current human 
brain imaging techniques preclude the identification 
of activity in separate amygdala nuclei, but individuals 
with lesions constrained to the basolateral amygdala134 
and neurosurgical patients with implanted depth elec-
trodes135 offer future opportunities to test analogous 
processes in humans.

Combined imaging and computational modelling 
has shown that the amygdala gates prediction-​error sig-
nals to the ACC in Pavlovian learning via both direct 
and social experiences126. Learning by observing oth-
ers’ pain expressions also engages activity in the PAG28, 
which is known to be central to defensive responses and 
self-​experienced pain via the regulation of the endo
genous opioid neuropeptide system and its prediction 
error-​like qualities27,136.

The studies in both rodents and humans so far 
reviewed suggest a shared processing of social and 
non-​social information, concurrent with the view that 
these sources of information are processed in a general 
value-​representation circuit8. Importantly, however, 
recent studies in humans have also shown that social 
threat learning is distinguished from direct learning in 
several ways. For example, as compared with learning 
through direct experiences of an aversive shock, learn-
ing by watching a demonstrator’s reactions to a shock 
provokes greater functional connectivity between the 
PAG and the STS28, between the amygdala, the STS and 
the TPJ, as well as between the anterior insular cortex 
and the TPJ126. Moreover, a recent experiment126 used 
dynamic causal modelling of connectivity to character-
ize the flow of information in the amygdala–anterior 
insular cortex–ACC network during both direct and 
vicarious threat learning, and showed that information 
about the US (self and other experienced shock) was 
most likely to enter the network through the amygdala 
during direct conditioning and through the anterior 
insular cortex during vicarious learning. The latter find-
ing resonates well with the role of the anterior insular 
cortex and the ACC in emotional sharing and empathy99 
and helps to explain why activity in these regions133, as 
well as empathic appraisals137, predicts the strength of 
vicarious threat learning. Although these findings are 
compatible with the general value-​representation view 
of social learning, they suggest that learning also occurs 
outside a common learning circuit.

Recent research has extended the study of social 
learning in humans to the transmission of safety infor-
mation. In these experiments, the participants (observ-
ers) watch a calm-​looking demonstrator modelling 
safety when confronted with a CS previously paired 
with shocks to the observers. The results have revealed 
that social safety learning leads to superior attenuation 
of the conditioned threat response as compared with 
traditional self-​experienced extinction training138,139 and 
recruits the vmPFC45.

Taken together, research has demonstrated that the 
neuro-​computational mechanisms underlying socially 
mediated Pavlovian threat and safety learning are 
both common and distinct to those underlying direct 
Pavlovian learning. Many of these distinctive fea-
tures can be examined by systematically manipulating 

the social characteristics of the demonstrator. This is 
discussed next.

Social biases. As social learning is dependent on social 
cognition, it is affected by various biased inferences 
and decisions that have been described across spe-
cies in behavioural ecology, and in humans in social 
psychology. For example, primates are more likely to 
imitate and learn behaviours demonstrated by a dom-
inant group member140,141, and greater perceived sim-
ilarity with a demonstrator produces stronger threat 
learning in both mice142 and humans104,143. Although 
not directly tested, these effects are likely to rely partly 
on both cognitive and affective social processes. For 
example, observing and thinking about dissimilar ver-
sus similar others is related to both less mentalizing144 
and affect sharing/empathic responses105 in prefrontal 
regions. In accordance with ‘demonstrator-​based’ SLS, 
research has shown that social threat learning is less 
dependent on perceived similarity with the demon-
strator, as compared with social safety learning, which 
depends on observer–demonstrator similarity138. The 
neural substrates of this group bias in safety learning 
remain unknown. In humans, the perceiver’s belief 
that the demonstrator is truly experiencing pain, in 
contrast to just pretending, causes stronger learning  
in an observational learning situation137,145, suggesting 
the involvement of model-​based computations. Such 
beliefs about the demonstrator’s internal state can be 
induced by, for example, verbal instructions, compris-
ing another common, and uniquely human, means of 
socially transmitting information about value.

Verbal learning. Verbal information can elicit Pavlovian 
responses without observed or self-​experienced US and 
CS–US pairings. Studies in which participants are merely 
informed about the risk of receiving shocks in a spe-
cific context or that specific cues might be paired with 
shock have consistently demonstrated increased physio
logical arousal146,147 and activation in many regions of 
the brain’s threat learning network146,148. This on-​the-​fly 
linking of social information to Pavlovian responses 
suggests the involvement of model-​based, as opposed to 
model-​free, Pavlovian control in certain types of social 
learning15,149. Social information can also powerfully 
modify individual learning experiences. For example, 
verbal instructions about changed threat contingencies 
can cause rapid updating of conditioned physiological 
responses150–152, which is reflected by dorsolateral PFC 
activity, in contrast to the amygdala, which tracks direct 
experience150.

Social Pavlovian reward learning. Studies with insects 
have provided compelling evidence for the view that 
social reward learning can originate from basic, domain-​
general learning processes153. For example, a recent study 
showed that bumblebees’ tendency to approach flowers 
where conspecifics forage directly depends on previous 
pairings of conspecifics and reward154. Conspecifics 
thereby come to serve as a second-​order reward pre-
dicting conditioned stimuli through pairing with the 
direct US (reward), which elicits approach behaviour. 

Observational learning
Learning through observing the 
responses and behaviour of 
others, which may or may not 
involve reinforcement.
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Notably, when conspecifics were instead paired with 
an aversive liquid, the bumblebees avoided flowers 
with other bumblebees. In other words, social reward 
learning could in these cases be explained by Pavlovian 
system responses, acquired through basic, model-​free 
non-​social learning mechanisms153. Social learning that 
facilitates finding potential food sources has also been 
described in rodents155. For example, the association 
between a smell of novel food and carbon disulfide, a 
component of rodent breath, with intrinsic, reward-
ing value156,157 expedites the formation of food prefer-
ence. Such socially acquired food preference memories 
require the orbitofrontal cortex (but see ref.158), PFC, 
hippocampus and basolateral amygdala159–161 (Fig. 3a); 
that is, the same brain regions involved in direct 
Pavlovian appetitive learning. Similarly, overlapping 
mechanisms of social and non-​social learning might 
exist in the NAcc, based on the demonstration of dopa-
mine release in the NAcc of rats witnessing a conspecific 
receiving a sucrose reward162.

Non-​social and social learning also seem to share 
specific mechanisms underlying the coding of value 
along the positive–negative continuum. Accordingly, 
valence-​sensitive neurons that process positive and 
negative non-​social stimuli, either innate or learned, 
have been found in many brain structures, including 
the NAcc, VTA and amygdala51,163,164. These neurons 
form neuronal circuits that compete with each other 
through reciprocal inhibition165. Interestingly, a class of 
positive-​valence neurons sensitive to both food and a 
social reward has recently been identified in the mouse 
basolateral amygdala165, suggesting that valence-​coding 
neurons are also involved in vicarious learning.

In humans, the learning mechanisms underly-
ing social Pavlovian reward learning are less clear. A 
meta-​analysis166 of imaging studies examining responses 
(but not explicitly learning) to personal and vicarious 
reward found that these engaged overlapping regions of 
the vmPFC, consistent with the role of this region in the 
computation of value. However, whereas the NAcc was 
identified as being preferentially engaged in directly, as 
compared with vicariously, experienced reward, brain 
regions related to mentalizing were more engaged in 
vicariously, as compared with directly, experienced 
rewards (Fig. 3b). Analogous to the previously discussed 
findings in the aversive (threat) domain, these results 
highlight both common and unique components of 
directly and vicariously experienced reward processing.

Similar to aversive learning, vicarious reward learning 
is biased by the observer’s evaluations of the demonstra-
tor, underscoring the relevance of demonstrator-​based or 
‘who’ SLS. For example, an imaging study in humans167 
showed that observers watching a confederate winning 
at a lottery rated the experience more enjoyable when the 
demonstrator was seen as socially desirable and similar 
to the self, as compared with socially undesirable and 
dissimilar to the self. Perceived liking increased activity 
in the ventral striatum — a region also activated when 
the observer won themselves — and similarity in the 
ACC, underscoring the role of this region in process-
ing of social information. The impact of similarity in 
vicarious reward and its impact on the ventral striatum 

can, however, be modified by motivational factors, 
such as costs to the self and competitive goals89,162,168. 
For example, watching an unfair competitor receiving 
painful stimulation can generate reward responses in 
the observer, including activity in the ventral striatum169.

Although most studies have assumed that vicari-
ous reward learning is based on model-​free learning 
rules (for example, the Rescorla–Wagner learning 
rule), a recent study, in which participants observed 
a demonstrator receiving rewards in association with 
specific cues, has questioned this view110. By contrast-
ing neural activity related to a model-​based algorithm 
(which learned the transition probability, or statisti-
cal association, between cues and outcomes) with a 
model-​free reinforcement learning algorithm, the study 
revealed model-​based, but not model-​free, neural sig-
nals. Specifically, the intraparietal sulcus represented 
model-​based state prediction errors during both vicari-
ous and experiential learning, whereas no regions exhib-
ited model-​free vicarious prediction errors. Because a 
basic model-​free algorithm should be able to form such 
associations easily, when and why such model-​based 
computations are used during simple forms of social 
learning remains an important open question.

Social instrumental threat learning. One of the theoret-
ical key benefits of social learning is that it allows avoid-
ing predation and other threats without costly first-​hand 
experience170, as expressed in the ‘copy when non-​social 
learning is costly’ SLS. Behavioural studies support this 
prediction. For example, a classic study showed that 
minnows (a species of fish) are more likely to select a 
socially demonstrated patch during high, in contrast to 
low, predation risk, even if previous individual learn-
ing conflicted with social demonstration79. Similarly, 
rats can socially learn to avoid harmful stimuli, such as 
a candle flame171 or a foot shock172,173 (Fig. 1d). Lesions 
of the medial PFC enhance the social learning of such 
avoidance responses, which suggests a suppressive role 
of this region in social modulation of avoidance174.

A recent study in humans demonstrated how 
Pavlovian threat learning through observation of a 
demonstrator receiving shocks biases later instrumen-
tal self-​experienced learning involving the same stimuli, 
in a manner similar to Pavlovian–instrumental trans-
fer21. This study shows how the basic computational 
principles of non-​social learning apply also to the social 
domain. It remains an open question whether this 
social bias of decision-​making is underpinned by brain 
regions critical for aversive learning, such as the amyg-
dala and the PAG, or regions involved in higher-​level 
mentalizing processes.

One of the most direct tests of the ‘copy when 
non-​social learning is costly’ SLS in humans investi-
gated how people behave when they know the envi-
ronment is dangerous (actions risked incurring electric 
shocks) and another agent’s behaviour can be observed175 
(Fig. 1f). This situation produced an almost deterministic 
copying of the observed behaviour, much higher than 
when people thought their actions might be rewarded. 
Computational modelling showed that people assigned 
value to the demonstrated action and used this value 
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to guide their own decisions. This shows how basic 
domain-​general learning mechanisms, combined with 
a tendency to copy others, can generate behaviour con-
sistent with distinct SLS. It is likely that brain regions 
involved in non-​social reinforcement learning, such as 
the ventral striatum, contribute to these computational 
mechanisms.

Social instrumental reward learning. Social learning also 
allows us to optimize behaviour to maximize reward. For 
example, rats learn actions to obtain a food reward more 
quickly if they first observed this response performed by 
another, well-​trained rat, compared with rats that did not 
observe conspecifics and rats that observed conspecifics 
not emitting response-​relevant cues176–178. Similarly, spa-
tial discrimination learning is facilitated by observation 
of a demonstrator first performing the task179,180.

The neural structures involved in the vicarious 
learning of reward-​guided instrumental behaviour 
in non-​human animals remain largely unknown. The 
scarce literature on this topic suggests the involvement 
of the medial PFC and the ventral striatum, in par-
ticular the NAcc, in observational learning of pressing 
a lever for food reinforcement181 (Fig. 3a), similar to 
direct learning of the task. Research in humans has also 
implicated the striatum in observational instrumental 
reward learning. For example, in an early study, partici-
pants both observed others making decisions and made 
decisions themselves for juice rewards182. Crucially, the 
dorsal striatum exhibited (model-​free) prediction-​error 
signals during both social and non-​social learning. 
This, and other similar studies107,108, suggest that at least  
this type of VRL utilizes computational and neu-
ral mechanisms highly similar to those involved in 
non-​social learning. A recent study provided converging 
support for this conclusion by directly recording human 
single-​neuron activity183. Neurons in the amygdala, 
rostral ACC (rACC) and medial PFC were recorded 
during a probabilistic card-​selection task, in which 
the participants learned about the best options in their 
environment by both direct experience and observing 
demonstrators. A subset of neurons in all three recorded 
regions tracked the expected value of the card chosen by 
the demonstrator, but, crucially, only the rACC encoded 
both the demonstrators’ outcomes and prediction errors 
in the way posited by reinforcement learning theory. 
Notably, the same rACC neurons did not encode direct, 
self-​experienced prediction errors. However, as no neu-
rons were recorded in the ventral striatum or the dopa-
minergic midbrain, the relationship between the rACC 
and those more classic reinforcement learning-​related 
regions in social learning remains unclear.

The results reviewed in the previous paragraph 
dovetail with the recent view that the gyrus of the ACC 
(ACCg) plays a central role in tracking the motivation 
of others184. Indeed, recent studies in both humans and 
non-​human primates provide direct evidence for the 
importance of the ACCg for multiple aspects of vicarious 
reinforcement processing and social learning. For exam-
ple, a single unit study on the rewarding outcomes of 
social decisions in monkeys showed that neurons in the 
ACCg preferentially encoded the allocation of reward to 

a peer monkey185. Similarly, research in humans using 
functional MRI has revealed that the ACCg responds 
to both vicarious punishment and reward, for example 
cues that are predictive of others’ monetary gain186,187 and 
experience of pain99,188. Interestingly, the ACCg may also 
conform to the principles of reinforcement learning by 
coding expectations and prediction errors about other 
people’s decisions6. Taken together, these findings have 
led to the suggestion that the ACCg allocentrically rep-
resents information about the consequences of actions 
of — or for — others, in contrast to egocentric rep-
resentations about the outcomes of one’s own actions184. 
Functionally, such allocentric coding might be espe-
cially useful in competitive interaction, as it would ena-
ble a representation of an updated prediction of others’ 
behaviour, as well as learning from those predictions. 
Interestingly, research tracing the white tract fibres of 
the primate brain shows that the ACCg is uniquely posi-
tioned to do so, because it is connected with the neural 
circuitry implicated in mentalizing and simulation of 
others’ actions, involving the dmPFC, the TPJ and the 
action/mirror system, respectively6,108,189.

In sum, the functional, neural and computational 
properties of the ACCg highlight this as one of the core 
regions guiding social reward learning. It remains to be 
seen, however, whether connections between the ACC 
and social cognitive and reward processing regions 
are necessary for social instrumental reward learning 
to occur, similarly to how, for example, connections 
between the ACC and the amygdala are necessary for 
social threat learning118,130.

Although most studies assume that social reward 
learning of instrumental actions is model-​free, a recent 
study suggests that it can take either model-​based or 
model-​free forms, depending on whether observed 
actions map to specific outcomes or have a simpler 
stimulus–response form190. By devaluating the value of 
the outcome13, it was found that observationally learned 
action–outcome associations were more model-​based, 
because responding ceased for the stimulus linked to 
the devalued outcome, whereas stimulus–response 
associations were more model-​free, because responding 
was preserved for the stimulus linked to the devalued 
outcome. This pattern directly mirrors the distinction 
between model-​based and model-​free reinforcement 
learning in the non-​social learning domain. Moreover, 
the difference between the model-​based and model-​free 
modes of social learning was reflected in distinct patterns 
of striatal activity, where model-​based more strongly 
recruited the dorsomedial parts. Notably, model-​based, 
or goal-​directed, social learning has also been established 
in children191 and several non-​human species192,193.

For humans, not all types of social instrumental 
reward learning require direct observation of others’ 
behaviours or their consequences (that is, VRL). The 
capacity for symbolic representation of information, 
such as in language, provides a unique means for social 
learning. In contrast to research on instructed threat 
described above, studies of verbal information trans-
mission in the reward domain have primarily focused 
on how verbal or written ‘advice’ about what action 
to choose influences subsequent non-​social learning. 
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This experimental setting is intended to capture a wide 
class of important real-​world situations, such as con-
sumer behaviour194, where others’ opinions might be 
central. Indeed, advice exerts a strong influence on 
individual behaviour195–197, which can be directly det-
rimental in cases when the advice is misleading198,199. 
Computationally, advice appears to influence individ-
ual behaviour by adding a ‘bonus’ to outcomes that are 
consistent with the advice, which neurally is mirrored 
by dorsal striatum activity195. This might indicate that 
advice modulates the computations of the model-​free 
instrumental system, although a model-​based system 
could in principle incorporate advice and other types 
of symbolic information during instrumental learning.

The detrimental effects of misleading advice high-
light one of the major theoretical problems with social 
learning: it can be error prone200. This is addressed by 
the important class of ‘who’ SLS described above, which 
prescribes heuristics that increase the chances of learn-
ing from individuals with superior skill and knowledge. 
For example, both human children201 and chimpanzees 
use a ‘copy knowledgeable others’ strategy141, and adult 
humans rely more on social learning if demonstrators 
are described as highly skilled202 or as having high intel-
ligence203. Recent studies provide a window into the 
neuro-​computational mechanisms that might underlie 
such inferences. For example, learning about others’ 
preferences, which can be used to infer their value as 
demonstrators, might be underpinned by a type of rein-
forcement learning that is unique (or most relevant) 
to social behaviour. In a recent study204, participants 
observed the choices, but never the outcomes, of other 
agents who they knew (from a previous learning session) 
had either similar or dissimilar preferences for types of 
food as themselves. Crucially, this setting did not pro-
vide the opportunity for VRL, as only others’ actions 
were visible. Notably, rather than simply imitating these 
actions, participant behaviour was best explained by 
so-​called inverse reinforcement learning205, a class of 
algorithms that allows learning from agents that have 
diametrically opposing preferences from the observer, 
which is not typically the case for imitation-​based 
methods. Furthermore, inverse reinforcement learning 
updating signals were represented by the TPJ and the 
STS, both key regions of the mentalizing network. Taken 
together, these studies show how ‘who’ SLS can be imple-
mented in the human brain and underline the unique 
role of mentalizing regions in this type of learning. It is 
possible that inferences related to mentalizing are crucial 
for certain SLS206, for example, ‘copy based on demon-
strator’s knowledge’ that is thought to be important for 
human culture. Moreover, algorithms based on inverse 
reinforcement learning might serve as the computa-
tional basis for such inferences about others’ preferences  
and intentions207.

Social learning in groups
The majority of neuroscientific social learning research 
has focused on situations with only one demonstrator, or 
a few. One of the most important classes of SLS, however, 
is ‘copy the majority’79, implicating multiple individuals. 
Theoretical models have shown that such conformity in 

social learning is an important ingredient for cultural 
evolution through its contribution to the rapid trans-
mission of cultural traits208,209, and field experiments have 
documented that humans tend to conform to the major-
ity209,210. An increasing number of animal studies have 
shown similar tendencies to follow the majority211–213, 
although the question of to what extent non-​humans 
display conformity remains a contentious issue214.

Although most neuroscience studies of conformity 
do not focus on learning215, they do provide impor-
tant clues about the possible mechanisms underlying 
‘copy the majority’ SLS. For example, studies show that 
reward-​sensitive areas (for example, the ventral striatum 
and the vmPFC) that are important in learning, signal 
the individuals’ conformity to the majority216. In a popu-
lar task, participants rate stimuli, such as faces, first alone 
and then again after seeing the average rating from an 
anonymous group of people216,217. Using this task, it has 
been shown that initial agreement between the partici-
pant and the majority group was related to ventral stria-
tum activity218, whereas disagreement with the majority 
resulted in deactivation of the ventral striatum. Both 
signals predicted subsequent conformity217,218. This pat-
tern of activations is consistent with an unsigned pre-
diction error, signalling that one differs from the group 
but not the direction of the difference, and this signal 
might be used for adjusting to group norms. Related 
work on persuasion highlights the role of the mental-
izing network in conformity. This research has shown 
that, across western and Asian cultures, increased activ-
ity in the dmPFC, the STS and the TPJ while viewing 
persuasive messages was associated with subjectively 
feeling persuaded afterwards115. Taken together, the 
findings discussed here show that, similar to many other 
forms of social learning, conformity involves both basic 
learning and valuation brain regions and regions key to 
social cognition.

The study of social learning is important for our 
understanding of how interactions in groups emerge 
and change. To capture the nature of group interaction, 
studies should ideally allow for real-​time interaction 
between experimental participants88. For practical rea-
sons, however, this is rarely done. In a landmark study 
of the neural mechanisms that allow consensus to be 
reached in social groups, a focal participant in the MRI 
scanner interacted in real time with a group of partici-
pants in a behavioural laboratory219. Using this dynamic 
set-​up, it was found that people reached consensus by 
integrating their own preferences with the prior major-
ity preference in the group, modulated by an estimate 
of the perceived ‘stickiness’ of the majority preferences 
(that is, how much the other participants tended to 
stick to their choices). Using computational modelling, 
it was found that these key social decision-​making var-
iables were encoded in distinct brain regions. Whereas 
the individual’s own preferences were encoded in the 
vmPFC, the prior preferences of the group majority were 
reflected in the STS and TPJ, suggesting the involvement 
of mentalizing-​related processes. Finally, the perceived 
stickiness of the majority preferences correlated with 
activity in the intraparietal sulcus. This study exem-
plifies how the neural mechanisms involved in social 
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learning can be studied in a dynamic social environ-
ment. Similar experimental paradigms might prove 
valuable for understanding how neural processes on the 
individual level can ‘scale up’, and thereby contribute to 
social norms, cultural evolution and other large-​scale 
social phenomena.

Conclusions and future directions
Similar to how social cognition repurposes existing 
domain-​general cognitive processes8,220, social learn-
ing co-​opts basic Pavlovian and instrumental learning 
systems, sharing both neural and computational 
mechanisms with self-​experienced learning. This con-
clusion supports the view that social and non-​social 
sources of information are processed in a general 
value-​representation circuit8. Social learning, how-
ever, is also distinguished from learning based on 
self-​experiences in several important ways. For example, 
in close interaction with the surrounding environment, 
social learning aligns with certain kinds of strategies 
(SLS) that are shared across species and uses a unique 
set of brain regions associated with the processes of 
social information. In our species, social learning also 
draws extensively on model-​based mentalizing and 
meta-​cognitive processes.

The realization that social learning is fundamental 
to social behaviour across many species and is key to 
the emergence and transmission of all aspects of human 
culture has spurred a surge of interest in this topic. New 
theoretical models in behavioural ecology and computa-
tional learning theory propel this development together 
with new experimental methods to measure dynamic 
social interactions and neurobiological techniques, such 
as optogenetics, used to isolate the underlying brain cor-
relates. These exciting developments have also opened 
up new questions to address in future research.

Important future directions can be summarized 
in four categories. First, in light of the developments 
outlined here, we must continue to bring together 
understanding of the function (computationally and 
phylogenetically) of social learning with its neural archi-
tecture. This pursuit will help to answer important open 
questions about social learning, such as in what ways 

this is distinct from non-​social learning (Box 1). Second, 
and related to the first direction, extended work on 
non-​human animals is needed to better map the molec-
ular and cellular levels of social learning87. Optogenetic 
and functional imaging techniques will enable research-
ers to control and monitor individual neurons in social 
situations, which is crucial for uncovering the under-
lying neural implementation of learning computations. 
This development should benefit not only from new 
animal models but from translating human paradigms 
to animals. Moreover, the use of modern imaging tools 
together with improved computational and statisti-
cal analysis methods will provide more efficient data 
extraction, thus reducing the number of animals used. 
Third, social learning plays an important role in the 
transmission of maladaptive fears and anxiety, such as 
those occurring in anxiety disorders and post-​traumatic 
stress. More knowledge is needed about both the social 
aetiology of such disorder and the ways social learning, 
such as vicarious safety learning139, can help the devel-
opment of new treatments. Our understanding of the 
neural and computational mechanisms of social learning 
lays the ground for several new promising avenues for 
research alliances between developmental and clinical 
scientists. Fourth, research on social learning needs to 
bridge between the levels of analyses to understand how 
learning scales up from the individual to social net-
works and larger group constellations that are of societal 
importance. For example, social learning mechanisms 
described in the individual based on laboratory exper-
iments in constrained group settings can be modelled 
in virtual agents, which are allowed to interact in social 
environments that simulate natural social situations170,175. 
The emergent social behaviours of these agents can then 
be verified against observations of large-​scale real-​world 
behaviour. We conclude that the study of social learn-
ing enables several unique ways to bridge neural and 
computational models with an understanding of behav-
ioural change of varying complexity, from the learning 
of basic threat avoidance to complex SLS and cultural 
phenomena.
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